Programme of study for Year 11 Foundation Maths 24-2025

Autumn (1 st term)	Autumn (2 nd term)	Spring (1 st term)	Spring (2 nd Term)	Summer (1 st term)	Summer (2 nd term)
Topic / Big Question:					
-Fractions decimals &	-Data: tally and				
percentages: add &	pictograms, frequency	Revision will focus on	Revision will focus on	Revision will be focused	Examination period:
subtract with decimals,	tables & frequency	topics in which	topics in which	around topics the class	
multiply & divide with	trees,	students have generally	students have generally	have generally	Yr 11 are on study leave
decimals, convert	drawing & interpreting	underperformed in	underperformed in	underperformed in	
petween FDP,	drawing & interpreting	their mock exams.	their mock exams.	their final mocks	
amount, percentage	bar charts, drawing nie				
change	chart, interpreting pie				
0	charts, drawing &				
-Similarity and	interpreting scatter				
congruence in 2D: solve	graphs				
problems to find	Mada a salar				
missing lengths in	-vectors: use column				
basic congruence	vectors and be able to				
criteria for triangles	represent information				
(SSS, SAS, ASA, RHS),	graphically given				
use congruence and	column vectors, add				
similarity to find	and subtract vectors,				
missing angles.	show graphically,				
Algobra rocan: Indox	scalar multiples of				
notation (Review all	vectors, parallel				
laws of indices),	questions				
simplify expressions,					
expand single and					
double brackets,					
factorising expressions,					

factorising & solving quadratics, drawing quadratics (with table of values)					
Skills (students should	Skills (students should	Skills (students should	Skills (students should	Skills (students should	Skills (students should
be able to do):	be able to do):	be able to do):	be able to do):	be able to do):	be able to do):
A01: Use, recall and apply standard techniques	A01: Use, recall and apply standard techniques	A01: Use, recall and apply standard techniques	A01: Use, recall and apply standard techniques	A01: Use, recall and apply standard techniques	A01: Use, recall and apply standard techniques
AO2:	AO2:	AO2:	AO2:	AO2:	AO2:
From given mathematical	From given mathematical	From given mathematical	From given mathematical	From given mathematical	From given mathematical
information: Reason,	information: Reason,	information: Reason,	information: Reason,	information: Reason,	information: Reason,
interpret & communicate	interpret & communicate	interpret & communicate	interpret & communicate	interpret & communicate	interpret & communicate
mathematically	mathematically	mathematically	mathematically	mathematically	mathematically
A03: Solve problems or	A03: Solve problems or	A03: Solve problems or	A03: Solve problems or	A03: Solve problems or	A03: Solve problems or
evaluate methods and	evaluate methods and	evaluate methods and	evaluate methods and	evaluate methods and	evaluate methods and
solutions within	solutions within	solutions within	solutions within	solutions within	solutions within
mathematics and in	mathematics and in	mathematics and in	mathematics and in	mathematics and in	mathematics and in
other contexts	other contexts	other contexts	other contexts	other contexts	other contexts
Key Learning Outcomes	Key Learning Outcomes	Key Learning Outcomes	Key Learning Outcomes	Key Learning Outcomes	Key Learning Outcomes
(students should know):	(Students should know):	(Students should know):	(Students should know):	(Students should know):	(Students should know):
Perform operations (addition, subtraction, multiplication, and division) with decimals	Use tally charts, pictograms, and frequency tables to record, organize, and summarize data				
Understand the relationship between fractions, decimals, and percentages and	accurately. Interpret pictograms, bar charts, pie charts,				

convert between	and frequency		
fractions, decimals, and	tables/trees to compare		
percentages	categories, identify		
Calculate percentages	trends, and answer		
of given amounts	data-related questions.		
Calculate percentage	Plot and interpret		
change	frequency polygons to		
	analyze data trends and		
Use the basic	differentiate them from		
congruence criteria for	histograms.		
triangles (SSS, SAS, ASA			
and RHS)	Construct and interpret		
	both vertical and		
Solve angle problems	horizontal bar charts to		
involving congruency.	represent categorical		
	data.		
Identify shapes that are	Duess and intermediate		
similar, including all	Draw and interpret ple		
circles or all regular	charts by calculating		
polygons with equal	sector angles and		
number of sides.	comparing proportions.		
	Plot scatter graphs to		
triangles and of other	explore relationships		
nlangies and of other	between two variables		
piane snapes, use this to	using lines of best fit to		
informers and solve	identify trends and		
angle problems using	make predictions.		
similarity			
Similarity.			
Identify the scale factor	Understand and use		
of an enlargement of a	column notation in		
shape as a ratio of 2	relation to vectors.		
corresponding sides.			

Understand the effect	Be able to present		
of enlargement on	given column vectors		
permeter of shapes.	given column vectors.		
Solve problems to find	Identify 2 column		
missing lengths in	vectors which are		
similar shapes.	parallel.		
Know the scale	Calculate using column		
diagrams, including	vectors, and represent		
bearings and maps are	graphically the sum of 2		
'similar' to real life	vectors.		
examples.			
Lico index laws to	Calculate using column		
simplify and calculate	graphically the		
the value of numerical	difference of 2 vectors.		
expressions involving			
multiplication and			
division of integer			
powers, fractions and			
powers of a power;			
Use letters to represent			
unknown in algebraic			
expressions and simplify			
linear algebraic			
expressions by			
conecting like terms,			
Multiply single and			
double brackets and			
collect like terms;			
Factorise algebraic			
expressions, and use the			

identity symbol and the not equal symbol Find the roots of the quadratic equation, which are the values of x where the quadratic expression equals zero and the turning point (or vertex) of the quadratic function; Use a table of values to draw quadratic graphs					
Autumn Term – centrally planned, standardised and teacher marked piece(s) of work Progress check as per assessment calendar Mock series 1		Spring Term – centrally planned, standardised and teacher marked piece(s) of work Progress check as per assessment calendar Mock series 2		Summer Term – centrally planned, standardised and teacher marked piece(s) of work Exam practice past papers Progress check as per assessment calendar	
Building understanding: Rationale / breakdown for your sequence of lessons: Working with fractions, decimals, and percentages sharpens mental math, which is helpful for estimating costs, measuring accurately, or quickly calculating probabilities in daily life. In KS3 students are taught to recognise	Building understanding: Rationale / breakdown for your sequence of lessons: Understanding data presentation techniques allows students to read and interpret graphs and charts they encounter in everyday life—news articles, reports, business documents, and scientific studies.	Building understanding: Rationale / breakdown for your sequence of lessons:	Building understanding: Rationale / breakdown for your sequence of lessons:	Building understanding: Rationale / breakdown for your sequence of lessons:	Building understanding: Rationale / breakdown for your sequence of lessons:

			-
similar 2D shapes. They	As students have learnt		
are also taught to find	in KS3 that coordinates		
the scale factor	represent the position,		
between them.	in KS4 students are		
Students are also taught	required to know that		
many other properties	vector represent		
of 2D shapes such	displacement. They are		
angles facts.	required to know how		
	moving from one place		
In KS4 students will be	to another always refers		
linking prior knowledge	to displacement		
of angle facts to show to	between two points.		
shapes are congruent	Calculating with vectors		
and give mathematical	also link with		
reasons for their	trigonometry and		
arguments. The	Pythagoras. Students		
understanding of why	can find the magnitude		
2D shapes are similar	of displacement and the		
requires understanding	angle of displacement		
of ratio and proportion.	using Pythagoras and		
Students are required to	trigonometric ratios		
learn them and can use	respectively.		
them in problem solving	Vectors appears in		
questions and in many	many other subjects		
other concepts such as	such physics and as well		
vectors, volume and	as in many real-life		
other geometric	contexts such as		
problems.	navigation and aviation.		
Congruency is link with			
other contexts such as			
geometric proofs and			
understanding it is			
important skills for			
students to learn.			
Knowing indices helps in			
calculating compound		 	

interest, population growth, and exponential decay in contexts like medicine, economics, and environmental					
science.					
Home – Learning:	Home – Learning:	Home – Learning:	Home – Learning:	Home – Learning:	<mark>Home – Learning:</mark>
Homework is assigned on Sparx Maths for students to complete once a week.	Homework is assigned on Sparx Maths for students to complete once a week.	Homework is assigned on Sparx Maths for students to complete once a week.	Homework is assigned on Sparx Maths for students to complete once a week.	Homework is assigned on Sparx Maths for students to complete once a week.	Homework is assigned on Sparx Maths for students to complete once a week.
Reading / High Quality	Reading / High Quality	Reading / High Quality	Reading / High Quality	Reading / High Quality	Reading / High Quality
Elements of literacy will be incorporated through key words and worded questions	Elements of literacy will be incorporated through key words and worded questions	Elements of literacy will be incorporated through key words and worded questions	Elements of literacy will be incorporated through key words and worded questions	Elements of literacy will be incorporated through key words and worded questions	Elements of literacy will be incorporated through key words and worded questions
Numeracy:	Numeracy:	Numeracy:	Numeracy:	Numeracy:	Numeracy:
Throughout the lessons students will be engaged with numeracy.	Throughout the lessons students will be engaged with numeracy.	Throughout the lessons students will be engaged with numeracy.	Throughout the lessons students will be engaged with numeracy.	Throughout the lessons students will be engaged with numeracy.	Throughout the lessons students will be engaged with numeracy.

Enrichment / opportunities to develop cultural capital (including careers, WRL and SMSC):

During the lesson a discussion will take place on the real-life scenarios the topic at hand students have come across or will face later in life when making decisions. These regular discussions allow teachers into an insight into the knowledge students have about life and how we can inform them further. Fractions, decimals & percentages:

When managing a household or social organization's finances, people use fractions, decimals, and percentages to allocate budgets, manage income, and track expenses (e.g., 50% of the budget for groceries).

Fractions and percentages help manage time for social activities, work, and personal life. For example, dividing your day into different parts: ¹/₃ for work, ¹/₃ for personal tasks, and ¹/₃ for social activities.

Many religious practices involve donating a percentage of one's income (e.g., 10% tithe in Christianity or zakat in Islam, which is 2.5%).

Decimals or percentages are used to calculate the amount of time devoted to spiritual practices relative to the entire day or week (e.g., spending 10% of your day in meditation).

In certain spiritual practices, the fraction of the day spent fasting (e.g., during Ramadan or Lent) is calculated to help people manage their health and spiritual commitments.

Percentages are often used to analyse participation rates in cultural events or festivals (e.g., 75% of the population celebrates a national holiday). Fractions and percentages show how different cultural groups are represented in media, art, and literature (e.g., 25% of films produced feature indigenous stories).

Percentages are used to track personal progress, such as achieving 80% of your fitness goal or 50% of a career development plan.

Grading systems often use percentages to reflect personal academic progress (e.g., getting 90% on an exam).

Fractions and percentages help in tracking performance improvement (e.g., running 10% faster) and time spent in training (e.g., spending 50% of your training time on strength and 50% on cardio). Decimals and percentages are used to measure caloric intake and balance

Similarity and congruence:

Similar and congruent shapes often serve as symbols or representations.

In social contexts, these symbols can convey shared meanings, fostering communication and understanding among individuals or groups. In various spiritual and religious traditions, specific shapes and geometric patterns hold symbolic or spiritual significance. The congruence and similarity of these shapes may be seen as representations of divine order or cosmic harmony. Architectural designs often incorporate congruent and similar shapes, reflecting cultural values and beliefs. Buildings and structures may use specific shapes to convey cultural identity and historical significance.

Quadratics:

Social: Medicine and Biology: Quadratic equations can be applied in pharmacokinetics to model the concentration of drugs in the body over time or to analyse the growth patterns of populations or organisms.

Moral: Optimization Problems: Quadratic equations often arise in optimization problems, where one seeks to maximize or minimize a certain quantity, such as cost, profit, or efficiency.

Spiritual: Psychology and Sociology: Quadratic equations can be utilized in statistical analysis to model relationships between variables or to study phenomena like learning curves or population dynamics.

Cultural: Art and Music: Quadratic equations can be used in art to create visually appealing shapes and patterns or in music to model sound waves and frequencies.

Personal Development: While not directly applicable in everyday life, understanding quadratic equations and problem-solving skills related to them can contribute to personal development by enhancing critical thinking and analytical abilities

Charts and Graphs:

Charts and graphs can depict population growth, demographic distributions, and migration patterns, aiding policymakers in understanding societal trends. Educational charts can illustrate literacy rates, school enrolment statistics, and educational attainment levels, helping to identify areas needing improvement in education systems. Graphical representations can show the distribution of religious affiliations across regions or countries, aiding in understanding cultural and spiritual diversity. Charts can depict changes in belief systems over time, such as shifts in religious adherence or the rise of new spiritual practices. Charts can visually represent time allocation for various activities, aiding in personal time management charts to analyse performance metrics like speed, endurance, and skill proficiency, identifying areas for improvement.

Vectors:

Vectors are used to represent transportation networks, flow of traffic, and movement patterns in urban areas. City planners utilize vector analysis to optimize infrastructure and improve transportation systems. Vectors are used in biomechanics to analyse movement patterns, forces, and trajectories in sports activities. Coaches and athletes utilize vector analysis to optimize performance and prevent injuries. Vectors represent forces, velocities, and directions in structural analysis and design. Engineers use vector calculus to ensure the stability and efficiency of buildings, bridges, and other infrastructure projects.