On – Line Programme of Learning for Year 13 – Further Mathematics

Autumn		Spring		Summer	
From: September	To: December	From: January	To: April	From: May	To: July
Teacher 1:Topic – A2 Pure MathsIntegrationTopic: - Core Pure 2SeriesMethods in CalculusMethods in DifferentialEquationsTopic – Further Pure 1VectorsInequalitiesThe t-formulae	Teacher 2: Topic: - Core Pure 2 Complex Numbers Volumes of Revolution Polar Coordinates Hyperbolic Functions	Teacher 1: Topic: - Core Pure 2 Modelling with Differential Equations Topic – Further Pure 1 Conic Sections Taylor Series Methods in Calculus Numerical Methods Reducible Differential Equations	Teacher 2: Topic – Further Mechanics 1 Momentum and Impulse Elastic Strings and Springs Elastic Collisions in two- dimensions	From: May To: July Revision for exams External exams will be sat this term.	
Key Skills – A2 Pure Maths Integrate standard mathematical functions including trigonometric and exponential functions and use the reverse of the chain rule to integrate functions of the form f(ax + b) Use trigonometric identities in integration Use the reverse of the chain rule to integrate more complex functions Integrate functions by making a substitution, using integration by parts and using partial fractions Differentiate and integrate parametric equations Key Skills – CP2 Understand and use the	Key Skills – CP2 Express a complex number in exponential form. Multiply and divide complex numbers in exponential form. Understand de Moivres's theorem. Use de Moivres's theorem to derive trigonometric identities; find sums of series; and to find the nth root of equations. Use complex roots of unity to solve geometric problems. Find volumes of revolution around both the x- and y-axis and for curves defined parametrically. Model real-life applications of volumes of revolution. Understand and use polar	Key Skills – CP2 Model real-life situations with first-order differential equations. Use differential equations to model simple harmonic motion. Model damped and forced oscillations using differential equations. Model real-life situations using coupled first-order differential equations. Key Skills – FP1 Identify an ellipse or a hyperbola from its Cartesian or parametric equations. Find the foci, directrices, and eccentricity for an ellipse or a hyperbola. Find tangents and normal to	Key Skills – FM1 Use the impulse-momentum principle and the principle of conservation of momentum in vector form. Use Hooke's law to solve equilibrium problems involving elastic strings or springs. Use Hooke's law to solve dynamics problems involving elastic strings or springs. Find the energy stored in an elastic string or spring. Solve problems involving elastic energy using the principle of conservation of mechanical energy and the work-energy principle. Solve problems involving the oblique impact of a smooth		
finite series Find and use higher derivatives of functions.	Convert between polar and Cartesian coordinates Sketch polar curves.	Solve simple loci questions. Derive and use Taylor series for simple functions.	Solve problems involving the oblique impact of two smooth spheres.		

Know how to express	Find the area enclosed by a	Use series expansions to	Solve problems involving	
functions as an infinite series	polar curve.	evaluate limits. Use the	successive oblique impacts of	
in ascending powers using	Find tangents parallel to, or	Taylor series method to find a	a sphere with smooth plane	
Maclaurin series expansion	at right angles to, the initial	series solution to a	surfaces.	
Bea bale to find the series	line.	differential equation.		
expansions of compound	Understand the definitions of	Apply Leibnitz's theorem for		
functions.	hyperbolic functions	differentiating products		
Evaluate improper integrals	Sketch the graphs of	Understand the use of		
Understand and evaluate the	hyperbolic functions.	derivatives to evaluate limits		
mean value of a function.	Understand and use the	of indeterminate forms using		
Integrate rational functions	inverse hyperbolic functions.	l'Hospital's rule.		
using trigonometric	Prove identities and solve	Use tangent half-angle		
substitutions	equations using hyperbolic	substitutions to find definite		
Integrate using partial	functions.	and indefinite integrals using		
fractions.	Differentiate and integrate	Weierstrass substitution.		
Solve first-order differential	hyperbolic functions.	Find numerical solutions to		
equations using an	Polar coordinates and	first-order differential		
integrating factor.	hyperbolic functions	equations using Euler's		
Solve second-order	introduce new functions and	method and the mid-point		
homogeneous differential	graphs – linking to previous	method.		
equations using the auxiliary	skills in coordinate geometry	Extend Euler's method to find		
equation.	and trigonometry.	numerical solutions to		
Solve second-order non-		second-order differential		
homogeneous differential		equations.		
equations using the		Use Simpson's rule to find an		
complimentary function and		approximation for a given		
the particular integral.		definite integral.		
Find particular solutions to		Use a substitution to		
differential equations using		transform first and second-		
given boundary conditions.		order differential equations		
Key Skills – FP1		into ones that can be solved.		
Write the vector equation of		Solve modelling problems		
a line using the cross		involving reducible		
product.		differential equations.		
Find the direction rations and				
direction cosines of a line.				
Use vectors in problems				
involving points, lines and				
planes				
Use the equivalent Cartesian				
forms for the equations of				
lines and planes.				
Solve inequalities involving				
modulus signs				

Use the t-formulae for					
modelling with trigonometry					
modelling with trigonometry.					
Assessments:	1		1	1	I
At AS students will be assessed	on their ability to				
A01 (50%): Use and apply stand	dard techniques – i.e. be able to	(i) select and carry out routine pr	ocedures; (ii) accurately recall fa	cts, terminology and definitions	
A02 (at least 15%): Reason, inte	erpret and communicate mather	natically – i.e. be able to (i) const	ruct rigorous mathematical argui	ments (including proofs); (ii) mak	e deductions and inferences;
(iii) assess the validity or mathe	ematical arguments; (iv) explain t	heir reasoning; (v) use mathematic	tical language and notation corre	ectly	
A03 (at least 15%): Solve proble	ems within mathematics and in c	other contexts – i.e. be able to (i)	translate problems in mathemati	ical and non-mathematical conte	xts into mathematical
processes; (ii) interpret solution	ns to problems in their original co	ontext, and, where appropriate, e	evaluate their accuracy and limita	ations; (iii) translate situations in (context into mathematical
models; (iv) use mathematical	models; (v) evaluate the outcom	e of modelling in context. Recogr	nise the limitations of models and	l, where appropriate, explain how	v to refine them.
End of term 1 assessment to co	over:	Term 2 assessment to cover:			
All AS content will be assessed	in September	January exams will assess AS co	ontent for FP! And FM1 and all		
All A2 content taught in Autum	n 1 will be assessed in	Core Pure content covered in y	ear 12 and the autumn term.		
November.		,			
Building understanding:	Building understanding:	Building understanding:	Building understanding:		
Rationale / breakdown for	Rationale / breakdown for	Rationale / breakdown for	Rationale / breakdown for		
your sequence of lessons:	your sequence of lessons:	your sequence of lessons:	your sequence of lessons:		
The key topics in Year 2	Complex numbers builds on	Conic Sections builds on the	This term takes students		
Mathematics have to be	the skills learnt at AS on this	AS content and utilises	through the final topics in		
complete before any	topic. Volumes of revolution	hyperbolic functions taught	further mechanics – building		
progress can be made in Core	looks at more complex	last term.	on skills learnt at AS.		
Pure. The topic of series	models and utilises	The remainder of the term	The mechanics teacher is		
builds on the CP1 topic and	integration skills covered in	takes a sequential approach	likely to finish teaching early		
on fluency in year 2	A2 mathematics.	through differential	in the term and will move		
differentiation. Methods in		equations building on the	onto revision of key topics.		
Calculus relies on fluency in		foundations laid last term.			
year 2 integration.		Some further methods in			
Differential equations are		calculus are introduced to			
introduced this term –		extend the calculus skills and			
building on A2 skills and		we cover numerical methods.			
laying the foundation for the		The topics covered rely			
rest of the course.		heavily on fluency in all			
Moving on to FP1 topics then		algebra and calculus skills			
gives time for further practice		covered on the course to			
and consolidation of calculus		date.			
skills before tacking					
differential equations.					
For FP1, the topics covered					
this term all extend the					
equivalent AS topics and have					
no reliance on calculus skills.					

Whilst students haven't yet							
covered modulus function in							
A2 mathematics, the further							
mathematicians have enough							
knowledge of graphs for this							
to not be an issue within							
inequalities.							
Calendared Centrally Planned Extended Home – Learning Tasks:							
End of chapter assessments will take place regularly in lessons							
Reading / literacy / Oracy:	- Ale - Balla and a sub-						
For reading in mathematics, see	e the links under enrichment.						
For literacy, students will learn	how to break down long worded	problems to extract the mathem	natics involved. This will be mode	lied in the classroom.			
Students should get used to rea	ading all parts of the textbook / ex	xam questions and challenging w	fords they don't understand.				
Numeracy:							
Students should be numerate in terms of knowing what a sensible answer looks like for any question they answer and not simply relying on the calculator.							
Enrichment / opportunities to develop cultural capital (including careers, WRL and SMSC):							
Plus Magazine https://plus.maths.org/content/- an online magazine that provides articles and podcasts for all aspects of mathematics, often discussing aspects of mathematics underlying							
recent news stories. They regularly interview people in maths-based careers and so this is a great source of inspiration for real world mathematics.							
Imperial College run an on-line programme (including masterclasses and MOOCs) in the spring and summer term for students in year 12 who are considering mathematics at university and							
aiming for an A* - https://www.imperial.ac.uk/be-inspired/schools-outreach/secondary-schools/mentoring-and-tutoring/maths-online-programme/							
The practice materials for university admissions provide enrichment and challenge on AS topics for students aspiring to the top grades. TMUA is the most accessible.							
https://www.admissionstesting.org/for-test-takers/test-of-mathematics-for-university-admission/preparation/; whilst the Oxford MAT papers are more challenging							
https://www.maths.ox.ac.uk/study-here/undergraduate-study/maths-admissions-test/mat-past-papers							
A padlet of resources for enrich	iment and revision for Feathersto	one students is kept here <u>https://</u>	/padlet.com/lemerson3/KS5math	<u>s</u>			