On - Line Programme of Learning for Year 13

Autumn (1 ${ }^{\text {st }}$ term)	Autumn (2 $2^{\text {nd }}$ term)	Spring (1 ${ }^{\text {st }}$ term)	Spring (2 ${ }^{\text {nd }}$ term)	Summer ($1^{\text {st }}$ term)	Summer (2 ${ }^{\text {nd }}$ term)
From:September To: October	From:November To: December	From:January To: February	From:March To: April	From:April To: May	From:June To: July
Topic/Key Questions/ Pure: Re-teach: Binomial expansion; Radians; Trigonometric functions	Topic/Key Questions/ Pure: Trigonometry and modelling; Parametric Equations; Differentiation	Topic/Key Questions/ Pure: Numerical Methods; Integration and Vector	Topic/Key Questions/ Pure: Revisions, Review and Re-teach Examination Preparations	Topic/Key Questions/ Revisions, Review and Reteach. Examination Preparations	Topic/Key Questions/ External Examinations
Applied maths: Mechanics: Moments; Forces and Friction	Applied maths: Mechanics: Applications of forces; Projectiles	Applied maths: Statistics: Conditional probability. Mechanics- Further Kinematics	Applied maths: Statistics: Normal distribution		
Learning Outcomes: By the end of the sub-unit, students will be able to perform all the skills highlighted below.	Learning Outcomes: By the end of the sub-unit, students will be able to perform all the skills highlighted below.	Learning Outcomes: By the end of the sub-unit, students will be able to perform all the skills highlighted below.	Learning Outcomes: By the end of the sub-unit, students will be able to perform all the skills highlighted below.	Learning Outcomes: By the end of the sub-unit, students will be able to perform all the skills highlighted below.	Learning Outcomes: By the end of the sub-unit, students will be able to perform all the skills highlighted below.
Skills (students should be able to do): Know the difference between an arithmetic and geometric sequence. Know the difference between a sequence and series.	Skills (students should be able to do): Prove and use the addition formulae. Understand and use the double-angle formulae.	Skills (students should be able to do): Carry out formal mathematical proofs. Locate roots of $f(x)=0$ by considering changes of sign.	$\begin{aligned} & \hline \text { Skills (students should be } \\ & \text { able to do): } \\ & \text { Understand the normal } \\ & \text { distribution and the } \\ & \text { characteristics of a } \\ & \text { normal distribution curve. } \end{aligned}$	Skills (students should be able to do): N/A	Skills (students should be able to do): N/A

Recall and use the formulae for the nth term and summations of arithmetic and geometric sequences and series.

Generate sequences using recurrence relations.

Model real-life situations with sequences and series.

Carry out binomial expansions for any rational constant and determine the range of values for which the expansion is valid.

Convert between degrees and radians.

Find an arc length using radians.

Find areas of sectors and segments using radians.

Solve trigonometric equations in radians.

Use approximate
trigonometric values when
x is small.
Understand the definitions of secant, cosecant, and cotangent

Solve trigonometric equations using the double angle and addition formulae.

Simplify expressions of the form $a \cos x+b \sin x$.

Prove trigonometric identities using a variety of identities.

Use trigonometric
functions to model reallife situations.

Convert parametric equations into Cartesian form by substitution and by using trigonometric identities.
Understand and use parametric equations of curves and sketch parametric curves.

Solve coordinate geometry problems involving parametric equations.

Use parametric equations in modelling in a variety of contexts.

Differentiate
trigonometric functions.
Differentiate exponentials and logarithms.

Use iteration to find an approximation to the root of the equation $f(x)=0$.

Use the Newton-Raphson method Applications to be modelling.

Integrate standard mathematical functions including trigonometric and exponential functions and use the reverse of the chain rule to integrate functions of the form $f(a x+$ b).

Use trigonometric

 identities in integration.Use the reverse of the chain rule to integrate more complex functions Integrate functions by making a substitution.

Use integration by parts and using partial fractions.

Use integration to find the area under a curve.

Use the trapezium rule to approximate the area under a curve.

Use vectors in 3D Use vectors to solve geometric problems Model 3D motion in mechanics with vectors.

Find percentage points and calculate values on a standard normal curve.

Find unknown means and or standard deviations for a normal distribution.

Approximate a binomial distribution using a normal distribution.

Select appropriate distributions and solve real-life problems in context.

and their relationship to cosine, sine and tangent.	Differentiate functions using the chain, product and quotient rules.	Understand set notation in probability.
Simplify expressions, prove simple identities and solve equations using secant, cosecant, and cotangent.		Understand conditional
	Differentiate functions which are defined	probability.
	implicitly.	Solve conditional probability problems using
Calculate the turning effect of a force applied to a rigid body.	Use the second derivative to describe the behaviour of a function.	two-way tables and Venn diagrams.
Calculate the resultant	Find an unknown force	Use probability formulae
Calculate the resultant moment of a set of forces	Find an unknown force when a system is in	to solve problems.
acting on a rigid body.	equilibrium	Solve conditional probability using tree
Solve problems involving uniform rods in	Solve statics problems involving weight, tension	diagrams.
equilibrium	and pulleys.	Work with vectors for displacement, velocity and
Solve problems involving non-uniform rods.	Understand and solve problems involving limiting equilibrium.	acceleration when using the vector equation of motion.
Solve problems involving rods on the point of tilting.	Solve problems involving motion on rough or smooth inclined planes.	Use calculus with harder functions of time involving variable acceleration.
Resolve forces into components	Solve problems invo	Differentiate and integrate
Use the triangle law to find a resultant force	connected particles that require the resolution of forces.	vectors with respect to time.
Solve problems involving smooth or rough inclined planes	Model motion under gravity for an object projected horizontally.	
Understand friction and the coefficient of friction	Resolve velocity into components.	

| | Derive the formulae for
 time of flight, range and
 greatest height, and the
 equation of the path of a
 projectile. | | |
| :--- | :--- | :--- | :--- | :--- |

would have seen it all prior

 to now. Doing Radians at this point will lead to a greater appreciation of trigonometricaldifferentiation as it is the substratum of the basic differentials on which all others are built.

Doing a more advanced form of trigonometry at this point will give pupils a continuous platform to build on the concepts that they would have seen in year 12. This will be more meaningful to them as they will be able to make the needed connections with little noise barriers to the Teaching and learning process.

In kinematics this can then be extended to the waves themselves and the sporting context to surfing and other examples.

The extensive use of graphs throughout this topic is vital to gaining an understanding of what is going on. However, there are other ways to set this process into context.

The work on connected rates of change should all be set into practical contexts so that this too becomes a practical based topic rather than purely symbolic manipulation. However, it is often here that learners can find a difficulty because each type of question is slightly different and there is no "magic formula" to solve them. A carefully built understanding of the format of this section should help to overcome this.
Lastly, constructing differential equations for a
learners to know what is that they can achieve in the long term were they to pursue this further.

Numerical Methods links with polynomials and
finding roots using algebraic methods; curve sketching; number sets and irrational numbers. It is also related to limits, derivatives, recurrence relations, integrals and sequences. The idea of iteration is conceptually important and links well with arithmetic and geometric sequences. The philosophical ideas underlying upper and lower bounds would be interesting to discuss and would have long term benefits for mathematics students. Investigating and developing a good understanding of the fixedpoint process would also be beneficial.

Stationary points and gradients play a part in numerical methods and will allow teachers to revisit

	There is a clear link with the previous work on Newton's First Law and Applications of vectors in a plane. This topic extends the learners knowledge of these concepts and tests their ability to draw clear diagrams, resolve forces and apply conditions of equilibria to rigid body problems. For extension, learners could use these methods in conjunction with the Laws of Friction to solve sliding and toppling problems. Calculus - The initial work on gradients and the whole understanding of the nature of rate of change and gradient is essential to being able to apply this to the curve of Subsequent work on calculus will make use of natural logarithms so this section forms an important foundation for future study.	Vectors is taught at this instance as it is clearly the application to Mechanics all forces are vectors. Pupils will then be facilitated to make the link and as such cause them to make a more meaningful appreciation of what they would have seen prior to this stage. Similarly, for most of the equations of motion, displacement, velocity and acceleration are all vectors; though this is not always made explicit when dealing with motion in a straight line.			
Calendared Centrally Planned Extended Home - Learning Tasks:	Calendared Centrally Planned Extended Home - Learning Tasks:	Calendared Centrally Planned Extended Home Learning Tasks:	Calendared Centrally Planned Extended Home - Learning Tasks:	Calendared Centrally Planned Extended Home - Learning Tasks:	Calendared Centrally Planned Extended Home - Learning Tasks:

Centralised online homework as well as regular written homework will be given. In collaboration with all teachers, end of Topic tests will be centralised and will be supervised under exams conditions.	$\begin{array}{ll}\text { Centralised } & \text { online } \\ \text { homework as well as }\end{array}$ regular written homework will be given. In collaboration with all teachers, end of Topic tests will be centralised and will be supervised under exams conditions.	Centralised online homework as well as regular written homework will be given. In collaboration with all teachers, end of Topic tests will be centralised and will be supervised under exams conditions.	Centralised online homework as well as regular written homework will be given. In collaboration with all teachers, end of Topic tests will be centralised and will be supervised under exams conditions.	Centralised online homework as well as regular written homework will be given. In collaboration with all teachers, end of Topic tests will be centralised and will be supervised under exams conditions.	Centralised online homework as well as regular written homework will be given. In collaboration with all teachers, end of Topic tests will be centralised and will be supervised under exams conditions.

Reading / literacy / Oracy:

For reading in mathematics, see the links under enrichment. For literacy, students will learn how to break down long worded problems to extract the mathematics involved.
This will be modelled in the classroom. Students should get used to reading all parts of the textbook / exam questions and challenging words they don't understand.
Numeracy: Students should be numerate in terms of knowing what a sensible answer looks like for any question they answer and not simply relying on the calculator.

Enrichment / opportunities to develop cultural capital (including careers, WRL and SMSC):

Students will participate in the UKMT senior maths challenge: all students are given the opportunity to partake in the individual challenge. Students will be selected to enter the team maths challenge. This provides students to compete in a nationally recognised mathematics competition.

Students are provided with a variety of internet resources (see links to several resources below) to develop their cultural capital in mathematics and provide them for opportunities for enrichment within the subject.
https://undergroundmathematics.org/
https://www.cimt.org.uk/projects/mepres/alevel/alevel.htm
https://www.stem.org.uk/resources/search
https://www.stem.org.uk/secondary/resources/collections/maths/a-level-maths

