Programme of study for Year 10 Higher Maths

conditional probability.	scale diagram. Calculate bearings \& solve bearing problems. Bisect a given angle. Construct angles of $45^{\circ}, 90^{\circ}$ and perpendicular, perpendicular bisector of line segment. Construct a region bounded by a circle \& an intersecting line. Construct a given distance from a point and a given line. Construct equal 2 points or 2 line segments. Know perpendicular distance from a point is the shortest distance to the line.	of a cuboid. Solve geometrical problems on coordinate axes. Understand, recall and use trigonometric relationships and Pythagoras' theorem in right angled triangles, and use these to solve problems in 3D configurations. Calculate the length of a diagonal of a cuboid. Find the angle between a line and a plane.	
End of term 1 assessment to cover: - Graphs - Linear graphs and coordinate geometry - Quadratic, cubic and other graphs - Transformations - Probability	End of term 2 assessment to cover: - Quadratic and simultaneous equations - Inequalities- - Multiplicative reasoning - Construction, loci and bearings	End of year assessment - Graphs - Linear graphs and - Quadratic, cubic - Transformations - Probability - Quadratic and sim	cover: coordinate geometry nd other graphs ultaneous equations

				- Inequalities- - Multiplicative rea - Construction, loc - Congruence and - Cumulative frequ histograms - Graphs of trigono - Further trigonom - Further trigonom	oning and bearings milarity in 2D \& 3D ncy, box plots and metric functions try try continued
Rationale for sequence:					
Students recap and consolidate graph skills attained at KS3 on recognise, plot and	In autumn term 2 students move to transformations and probability.	In spring term 1 students move onto exploring algebra in more depth. They	In Spring term 2 students revisit inequalities but in more detail from their	In Summer 1 students move to congruency. In KS3 learners understand that if two	In summer 2 students explore more deeper into trigonometry.
sketch linear functions.	In KS4 students are enhancing all their skills on	deepen their knowledge with	skills obtained in KS3.	2-D shapes are congruent,	In KS3 students practice applying
Students also use linear graphs to estimate and predict values of y, given values of x and	the following types of transformations: reflection, translation, enlargement and rotation.	quadratic and simultaneous equations.	In KS3 students were introduced to solving simple one and two step inequalities and	corresponding sides and angles are equal and are able to solve problems using	Pythagoras's theorem in 3D configurations. In KS4 learners sharpen these skills and have to
vice versa.	At KS3 students focus more on enlargement with a	In KS3 students begin to factorise quadratic	need to be able to show inequalities on a	properties of angles, of parallel and	understand, recall and use trigonometric
In KS4 they spend autumn term 1	positive scale factor and a centre of enlargement. In	equations where the coefficient of x^{2} is 1 and	number line.	intersecting lines and of triangles and other	relationships and Pythagoras' theorem in
appreciating the basics of graphs, linear graphs	KS4 students revisit these skills but deepen their	put these into brackets ready to solve.	From their previous skills students will	polygons.	right angle triangles and use this to solve
coordinate and	knowledge by enlarging		revisit the above and	In KS3 student are	problems in 3D configurations
geometry and quadratics cubic	shapes with a negative scale factor where they are	Here in the Spring Term 1 students use those	widen their knowledge by moving onto solving	familiar with explaining reasoning with	configurations. Learners are also
reciprocal and other graphs.	introduced to column vector notation.	skills obtained from KS3 to factorise quadratics where the coefficient of	2 linear inequalities and finding solution sets to compare and	diagrams and develop knowledge of lines, angles and polygons by:	introduced to calculating the length of a diagonal of a
In KS3 students have already obtained skills	In KS4 students are expected to describe and	x^{2} is more than 1 and put these into double	see which integers satisfy both. They also	using the congruence Conditions (SSS, SAS,	cuboid, finding angles between a line and a

on speed/distance time graphs and enhance skills this term. This term students are introduced to higher level velocity time graphs and explore working with areas under the graph.

This term students are introduced on how to find midpoint and gradients using the formula and triangle method (change in y over change in x).

Students revisit from KS3 skill on how to draw and label horizontal $(y=4)$ and vertical lines ($x=2$). They will also expected to understand the lines $y=x$ and $y=-x$. In KS4 we develop these skills by drawing skills by drawing linear graphs (with and without a table of values).
Students enhance these skills then move onto drawing and plotting graphs in the form on $a x+b y+c=0$. Here they need to identify the
perform a combination of transformations.

Previously in KS3 students learn how to work out the probability of an event or two events, experimental probability, use of a sample space diagram and are introduced to basic tree diagrams.

Students in KS4 sharpen their probability skills by understanding concepts that probabilities sum to 1 . So the probability of an event not happening is 1-p.

Students work out the probabilities from Venn diagrams to represent real life situations and also abstract sets of numbers.

In KS3 students use Venn diagrams to find the HCF and LCM method and are introduced to union and intersection notation. In KS4 students will explore shading different regions on a Venn Diagram with the correct probability notation for example (P(A $\left.n B^{\prime}\right)$). Probability of A and B not happening.
brackets. Already at KS3 students are familiar with the concept of difference of two squares and how to factorise them.

In KS3 students previously only focus on solving linear simultaneous equations strictly using the method of elimination and come across how to solve them graphically.

In KS4 students now strengthen this by re vising the above skills and solving harder simultaneous equations using the method of substitution. Here they broaden their algebra skills by beginning to solve quadratic simultaneous equations with a linear one, where some require one additional step to rearrange for either x or y.

There are 3 techniques on how to solve a quadratic which is the
begin to solve linear inequalities in 2 variables algebraically using all their previous algebra skills obtained from KS3.

In KS4 an additional element taught to the inequalities topic is making students aware of using the correct notation to show both inclusive and exclusive inequalities.

In KS3 students are introduced to the basics of loci and construction. Previously they were taught how to use a ruler and compass to construct a: bisector of an angle, perpendicular bisector and perpendicular from a point to a line.

In KS3 learners will be given opportunities to solve geometric problems base on real life scenarios such as location of a house a certain distance away from a given point or

RHS, ASA) to deduce familiar properties of triangles and quadrilaterals, e.g. an isosceles triangle has two equal angles.

Using the above skills students now in KS4 enhance their congruency kills by proving two shapes are similar by showing corresponding angles are equal or scale factor of the sides are in the same ratio. They also use formal geometrical proof for similarity of 2 given triangles.

Students also enhance skills on solving problems involving frustum of cones.

In KS4 students are introduced to constructing cumulative frequency tables and graphs where they gain skills on how to find the median, quartiles and inter quartile range from the graphs and data sets. Here they explore how to
plane by using the previous skills obtained at KS3.

Learners now establish trigonometry used in non-right angled triangles where they begin to find the area of a triangle applying the formula $\mathrm{A}=\frac{1}{2} a b \sin C$.

gradient of the equation by rearranging to make y the subject of the formula. In KS4 students will enjoy the experience of drawing new graphs such as quadratic, cubic, reciprocal and circle graphs. Here students will the skill of substitution to complete a table of values (with and without a calculator) to draw the above graphs.	Students explore a measure of the probability of an event occurring given that another event has occurred is also known as conditional probability. Here students explore real life Conditional probability looks at these two events in relationship with one another.	focus of the spring term 1 objectives. Here students recognise the 3 methods to solve a quadratic equation are: completing the square, using the quadratic formula and factorising. Students also apply skills used and gained from autumn term 1 on drawing the equation of a circle. Applying these skills students are expected to now solve simultaneous equations that involve quadratic equations (equation of a circle) and a linear equation both graphically and by the method of substitution.	they will be given opportunities to use loci when installing CCTV cameras in a building/GPS systems. In KS4 students enhance those skills by calculating bearing and solving bearing problems and are expected to read and construct scale drawing, drawing lines and shapes to scale. This skill is used a lot in cross curricular subjects like Geography and Duke of Edinburgh hikes when using scaling of maps.	compare the mean and range of 2 distributions or the median and interquartile range. Previously in KS3 students access skills on how to produce a histogram (Frequency density $=$ Frequency \div Class width). In KS4 now student use these prior skills attained to interpret and estimate the mean and median from a histogram or finding the frequency of a given interval. In this term students explore, recognise, sketch and interpret graphs of trigonometric functions (in degrees) $y=\sin x$ $y=\cos x$ $y=\tan x$ At the start of KS4 students learn to calculate exact trig values for $\sin \theta, \cos \theta$, $\tan \theta$, for $\theta=$ $0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$. In Year 10 during the Summer term 1 students recall these prior skills but find them from graphs.

				Using the above skills students are then exposed to graph transformations i.e $\mathrm{y}=-$ $\mathrm{f}(\mathrm{x}), \mathrm{y}=(-\mathrm{fx}), \mathrm{y}=\mathrm{f}(\mathrm{x})+\mathrm{a}$, and $\mathrm{y}=\mathrm{f}(\mathrm{x}+\mathrm{a})$. This can be linked to skills in physics from sound waves.	
Reading / literacy:					
Numeracy:	Numeracy:	Numeracy:	Numeracy:	Numeracy:	Numeracy:
Enrichment / opportunities to develop cultural capital (including careers, WRL and SMSC):					

