Programme of study for Year 10 Foundation Maths

Autumn (1 ${ }^{\text {st }}$ term)	Autumn (2 ${ }^{\text {nd }}$ term)	Spring (1 ${ }^{\text {st }}$ term)	Sp	Summer (1 ${ }^{\text {st }}$ term)	Summer (2 ${ }^{\text {nd }}$ term)
Other timescale: From: September To: October	Other timescale: From: October To: December	Other timescale: From: January To: February	Other timescale: From: February To: April	Other timescale: From: April To: May	Other timescale: From: June To: July
Topic / Key Question: - Perimeter, area and volume - Real-life graphs	Topic / Key Question - Straight line graphs - Ratio - Proportion	Topic / Key Ques - Probabilit	Topic / Key Question: - Pythagoras and trigonometry - Multiplicative reasoning	Topic / Key Question: - Plans and elevations - Constructions, loci and bearings - Quadratic equations: expanding and factorising	Topic / Key Question: - Quadratic equations: graphs
Skills: A01: Use, recall and apply standard techniques	Skills: A01: Use, recall and apply standard techniques	Skills: A01: Use, recall and apply standard techniques	Skills: A01: Use, recall and apply standard techniques	Skills: A01: Use, recall and apply standard techniques	Skills: A01: Use, recall and apply standard techniques
AO2: From given mathematical information: Reason, interpret \& communicate mathematically	AO2: From given mathematical information: Reason, interpret \& communicate mathematically	AO2: From given mathematical information: Reason, interpret \& communicate mathematically	AO2: From given mathematical information: Reason, interpret \& communicate mathematically	AO2: From given mathematical information: Reason, interpret \& communicate mathematically	AO2: From given mathematical information: Reason, interpret \& communicate mathematically
A03: Solve problems or evaluate methods and solutions within mathematics and in other contexts.	A03: Solve problems or evaluate methods and solutions within mathematics and in other contexts.	A03: Solve problems or evaluate methods and solutions within mathematics and in other contexts.	evaluate methods and solutions within mathematics and in other contexts.	evaluate methods and solutions within mathematics and in other contexts.	A03: Solve problems or evaluate methods and solutions within mathematics and in other contexts.
Key Learning Outcomes: Indicate given values on a scale. Convert between units of measure within one	Key Learning Outcomes: Use function machines to find coordinates. Identify, plot and draw	Outcomes: Distinguish between events which are impossible, unlikely, even chance, likely and	Key Learning Outcomes: Understand, recall and use Pythagoras' theorem in 2D. Justifying if a triangle is right-angled or not using	Key Learning Outcomes: Draw circles and arcs to a given radius or diameter. Measure \& draw lines to nearest $\mathrm{mm}+$ angles to	Key Learning Outcomes: Generate points and plot graphs of simple quadratic functions, then more general

system.	graphs		Pythagoras' theorem.	nearest degree.	quadratic functions.
Make sensible estimates of a range of measures in everyday settings.	$y=a, x=a, y=x, y=-x \text {. }$ Plot and draw graphs of straight line: $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{c}$.	a probability scale of 0 to 1 . Write probability using	Calculate the length of the hypotenuse and of a shorter side in a rightangled triangle	Understand CW \& ACW and use compass directions.	Identify a line of symmetry of a quadratic graph.
Find perimeter of 2D shapes.	Sketch a linear graph using the gradient \& y -	fractions, percentages or decimals.	(including surd and decimal lengths).	Draw sketches of 3D solids: Know the terms face, edge, and vertex.	Find approximate solutions to quadratic equations using a
Find area of 2D shapes.	intercept.	Find the probability of	Apply Pythagoras'	Identify and sketch	graph.
Find perimeter and area of composite shapes. Estimate surface area by rounding dimensions	Identify parallel lines from given equations.	an event happening using theoretical probability.	theorem with a triangle drawn on a coordinate grid.	Identify and sketch planes of symmetry of 3D solids.	Interpret graphs of quadratic functions from real-life problems.
to 1 significant figure.	Plot and draw graphs for equation. In form:	List all the outcomes for single events, and	Calculate the length of a line segment $A B$ given	Use isometric grids to draw 2D representations	Identify and Interpret
Find Surface Area (SA) of a prism.	$a x+b y=c .$ Find the equation of a	combined events systematically.	pairs of points.	of 3D solids.	roots, intercepts and turning points or
Identify and name common 3D shapes.	straight line graph	Work out probabilities	Understand, use and recall the trigonometric	Make accurate drawings of 2D shapes using a	quadratic graphs.
Sketch nets of cuboids and prisms.	Find the equation to a line through one point	from frequency tables, frequency trees and two	ratios sine, cosine and tan; apply them to find	ruler + protractor.	
Find the volume of a prism.	and a given gradient.	way tables.	angles and lengths of general triangles in 2D	Draw front \& side elevations \& plans of	
Estimate volume of	Find approximate solutions to a linear	Record outcomes of probability experiments	figures.	shapes made from simple solids.	
Estimate volume of prism, by rounding	equation from a graph.	in tables.	Use trigonometric ratios to solve 2D problems	Given the front + side	
lengths to 1 significant figures.	Find the gradient of straight lines from real	Add simple probabilities.	including angles of elevation and depression.	elevations \&plan, sketch the 3D solid.	
Function machines. State coordinates in all	life graphs.	Identify different	depression.	Understand congruence.	
4 quadrants in 2D.	Write ratios in their simplest form.	mutually exclusive outcomes and know the sum of the probabilities	Know exact values of $\sin \theta$ and $\cos \theta$ for : $\theta=$ $30^{\circ} 45^{\circ} 60^{\circ}$ and 90° For	Construct SSS, SAS, ASA \& right angled triangles.	
Identify points from given coordinates.	Express the division of a quantity into a number	of all outcomes is 1 .	$\tan \theta$ know exact values for : $\theta=30^{\circ}, 45^{\circ}, 60^{\circ}$	Construct: perpendicular bisector of line/angle,	

Find the coordinates of points identified by geometrical information in 2D.	of parts as a ratio. Share a ratio in a given quantity.	Use $\mathbf{1 - p}$ as the probability of an event not occurring, where p is the probability of the event occurring.	Understand and use compound measures: density, pressure \& speed.	perpendicular from a point to a line \& angles of $45^{\circ}, 90^{\circ}$ Draw and construct diagrams from given
Find the midpoint coordinates of a	Interpret a ratio to describe a situatio			instructions.
segment	Use ratio to find 1	probability from a list or table, including	speed measures. Read values in km/h and	Use and interpret maps and scale drawings.
Draw straight line graphs for real-life situations.	quantity when other is known	algebraic terms Find the probab	mph from a speedomete	Make an accurate scale drawing from a diagram.
Draw distance/time graphs and	Write ratio as a fraction + as a linear function.	using relative frequency.	Use kinematics formulae to calculate speed and acceleration.	Use 3 figure bearings to specify direction.
vel	Write ratio in form 1:m or m:1.	Estimate the number times of times an eve		
Work out time intervals for graph scales.	Use ratio and be able to: - compare a scale	will occur, given the probability and the number of trials	as a percentage of another number.	position of point B, given its bearing from point A.
Interpret distance/time graphs.	model to real-life object to scale up recipes	(experimental \& theoretical).	Calculate percentag profit or loss.	Given the bearing of point A from B, workout the bearing of B from A.
Interpret information presented in a range of		Draw and use a sample		
linear \& non-linear graphs.	Write a ratio as a fraction.	sp W	involving repeated a change not using a formula	Give bearings between the points on a map or a scaled plan.
Interpret graphs with negative values on axes.	Use proportion a equality of ratios	probabilities from Venn diagrams to represent real life situation and	Find the original amount, given the final amount after a	Use accurate drawings to solve bearings problems.
	Solve word problems	also abstract sets of numbers.	percentage increase decrease.	
	in			including bearing
di	indirect proportion.	Compare experimental data \& theoretical	Use compound interest. Use measures in ratio	Define a quadrati expression.
sp	Work out which	probability.	proportion problems:	
filling and emptying.	product is better buy.			Multiply together two

	Scale up recipes. Convert between currencies. Solve problem using unitary method. Recognising direct \& indirect proportion graphs. Understand direct proportion: $\boldsymbol{y}=\boldsymbol{k} \boldsymbol{x}$.	Compare relative frequencies from samples of different sizes. Find the probability of success events (Several throw of a single dice). Use tree diagrams to calculate the probability of independent/dependent events.	rates of pay, best value. Set up, solve and interpret the answers in growth and decay problems. Understand and interpret equations/graph that are in direct and indirect proportion. Understand X is inversely proportional y is equivalent to x is proportional to $\frac{1}{y}$.	algebraic expressions with brackets. Square a linear expression $(x+1)^{2}$ Factorise quadratic expressions of the form $x^{2}+b x+c$. Factorise a quadratic expression $\boldsymbol{x}^{2}-\boldsymbol{a}^{2}$ using a difference of two squares. Solve quadratic equations by factorising. Find roots of a quadratic function algebraically.	
End of term 1 assessment - Perimeter, area - Real-life graphs - Straight line grap - Ratio - Proportion	to cover: d volume s	End of term 2 assessment - Probability - Pythagoras and tri - Multiplicative reaso	to cover: gonometry oning	End of year assessment to - Plans and elevatio - Constructions, loci - Quadratic equatio factorising - Quadratic equatio	cover: and bearings : expanding and s: graphs
Rationale for sequence: In Autumn term 1 learners are exposed to perimeter, area, volume questions and real life graphs. In KS3 learners are	Rationale for sequence: Learners must continue to use skills obtained from real life graphs. In KS3 students are familiar with the concept of a ratio. Here learners simplify and	Rationale for sequence: In KS3 students are taught to record, describe and analyse the frequency of outcomes of simple probability experiments involving randomness, fairness equally and	Rationale for sequence: In spring term 2 students are expected to develop their multiplicative reasoning skills and are expected to recall and retain Pythagoras theorem whilst being introduced	Rationale for sequence: In summer term 1 students focus on plans and elevations, constructions, loci and bearings, quadratic equations: expanding and factorising.	Rationale for sequence: In the last term of year 10 students discovering more depth of quadratics and its graphs and properties. Learners need to recall

Introduced to finding the area of squares and rectangles. They are also expected to find the area of shapes on a centimetre grid by counting squares. At the same time students should be able to recognise that shapes with the same area have different perimeters and vice versa.

From using the formula for an area of:
trapezium, triangle and parallelogram, students are able to solve problem solving questions on composite shapes. (2 or more shapes).

Prior skills of rounding to decimal places, significant figures will be used when estimating the surface area and volume of 3D shapes. Learners will be taught in the Autumn term 1 to sketch nets of cuboids and prisms at the same time be able to identify and name
divide an amount into a ratio. In Autumn term 1 in KS4 learners are now interpreting a ratio to describe a situation. Students will then be introduced to write a ratio in the form of $1: n$ or n :1 to find one quantity when the other is unknown. Learners will learn how to express ratio by parts and fractions. Students discover this through real life scaling problems. A real life scenario can be applied when scaling up or down recipes.

Linking proportion and ratio with KS3, students have been taught to express and simplify ratio; unitary ratio and divide into ratio; solve problems involving proportion i.e. recipe and exchange rates

In KS4 building on their previous knowledge, learners will be able to solve complex problems using the understanding of direct
unequally likely outcomes using the appropriate language and the 0-1 probability scale. They recall and retain that the probability of all outcomes sum to 1 .

In KS4 students are expected to recall and retain how to draw and use sample space diagrams. They also recall information on how to find a missing probability from a list or table including algebraic terms using their prior algebra skills.

Learners this term begin to develop skills on find probabilities using a Venn diagram to represent real life situations and abstract set of numbers. Here they explore how Venn diagrams are used in real life jobs such as scientists studying human health and medicines.

Leaners are also
introduced to
to new trigonometry content in a right-angled triangle.

Learners have
previously been exposed to the concept of Pythagoras theorem. In KS4 they have to extend their skills by applying Pythagoras' theorem with a triangle drawn on a coordinate grid, find the hypotenuse and shorter lengths of a triangle from a right angle triangle. They will need to recall skills on leaving answers in surd form and to any correct decimal point, significant figure.

Learners will also explore real life aspects of Pythagoras theorem and trigonometry SOH CAH TOA using trigonometric ratios to solve 2D problems including angles or elevation and depression for example pilots when they are landing and flying back to airports.

In KS3 learners previously can measure and draw lines to the nearest mm and angles to the nearest degree. In KS4 learners need to recall these skills by drawing sketches of 3D solids identify and understand what the terms face, edge and vertex mean.

This term learners will be introduced to drawing front and side elevations and plans of shapes made from simple solids (recall from previous skills obtained) and give the front and side elevations and plans and sketch these 3D solids. Here learners discover the importance of plans and elevations to real life jobs in mechanical engineering, architects when constructing initial building plans.

Leaners have previously been introduced to construction and loci and bearings. In KS4 learners understand the importance of
skills obtained from the summer term 1 on quadratic graphs and develop skills on its properties this term.

Previously students learnt how to factorise quadratic equations where the coefficient of $x^{\wedge} 2$ is 1 , then place these into brackets and can begin to solve for x . Students are exposed to new vocabulary such as estimates and roots (where it meets the x axis).

This term students are required to generate points and plot graphs of simple quadratic functions and more complex quadratics using a table of values. Here students will need to recall and recap skills on algebra previously obtained on substitution and need to be careful when substituting negative values into squares ensuring brackets are used to avoid common calculator mistakes.

common 3D shapes.	and inverse proportions. Most of the other concepts that requires multiplicative reasoning. Furthermore, students need to express a multiplicative relationship between two quantities as a ratio or a fraction and show this on a graph. The equation of a straight-line can been as a relation between two quantities and the table representation is closely related to proportions. The concept of proportion and ratio relies on multiplicative reasoning, which appears in most mathematical contexts. From recipe and exchange rates, from graphs to interpreting the gradient at a point on a curve as the instantaneous rate of change, from Pythagoras to trigonometry, from scaling a length to find the relative area and	calculating the probability of independent and dependent combined events, including using tree diagrams and other representations, and know the underlying assumptions.	In KS3 learners have previously worked with percentage multipliers (increase and decrease.) In KS4 they need to recall and retain information and understand the language of a question for depreciation (loses value) interest/appreciation and apply skills retained on percentage multipliers to compound interest questions. Here students explore real life applications of compound interest (I.e. interest gained from a saving account after a number of years.) Students will explore field of real life jobs such as finance when being introduced to this topic. In KS4 learners are also revisiting skills obtained from previous terms on real lie graphs by using ratio and proportion problems: currency conversions, rates of pay and best value. Leaners will also set up	congruency and recall skills on constructing SSS, SAS, ASA and right angles triangles using a ruler compass and protractor. Learners are expected to use loci by drawing and constructing diagrams from given instructions and is introduced to skills on constructing perpendicular bisectors of a line. Learners explore how important bearing and loci are for architects, pilots and jobs, which involve a boat sailing i.e. fisherman. This term students are introduced to what a quadratic equation and explore the general form of a quadratic is $a x^{\wedge} 2+$ $b x+c$ where a, b and c are integers. Previously in KS3 students can expand single brackets and move onto expanding double brackets in KS4 and simplify answers in it's simplest form by collecting like terms. Learners are also	Students this term also deepen their understanding on properties of quadratics graphs by identifying a line of symmetry on a quadratic graph, interpret and identify roots, intercepts and turning points. Students will explore real life jobs where quadratic graphs are used i.e. astronomers, physicists and economists.

