Programme of study for Year 10 Foundation Maths

Autumn (1 st term)	Autumn (2 nd term)	Spring (1 st term)	Spring (2 nd Term)	Summer (1 st term)	Summer (2 nd term)
Other timescale:	Other timescale:	Other timescale:	Other timescale:	Other timescale:	Other timescale:
From: September To: October	From: October To: December	From: January To: February	From: February To: April	From: April To: May	From: June To: July
Topic / Key Question:	Topic / Key Question:	Topic / Key Question:	Topic / Key Question:	Topic / Key Question:	Topic / Key Question:
- Perimeter, area	- Straight line	- Probability	- Pythagoras and	- Plans and	- Quadratic
and volume	-	Trobability	trigonometry	elevations	equations:
- Real-life graphs	graphs - Ratio		- Multiplicative	- Constructions,	graphs
	- Proportion		reasoning	loci and bearings	graphs
	- Proportion		Teasoning	- Quadratic	
				-	
				equations:	
				expanding and factorising	
Skills:	Skills:	Skills:	Skills:	Skills:	Skills:
			A01: Use, recall and		
A01: Use, recall and	A01: Use, recall and	A01: Use, recall and	,	A01: Use, recall and	A01: Use, recall and
apply standard	apply standard	apply standard	apply standard	apply standard	apply standard
techniques	techniques	techniques	techniques	techniques	techniques
AO2:	AO2:	AO2:	AO2:	AO2:	AO2:
From given mathematical	From given mathematical	From given mathematical	From given mathematical	From given mathematical	From given mathematical
information: Reason,	information: Reason,	information: Reason,	information: Reason,	information: Reason,	information: Reason,
interpret & communicate	interpret & communicate	interpret & communicate	interpret & communicate	interpret & communicate	interpret & communicate
mathematically	mathematically	mathematically	mathematically	mathematically	mathematically
A03: Solve problems or	A03: Solve problems or	A03: Solve problems or	A03: Solve problems or	A03: Solve problems or	A03: Solve problems or
evaluate methods and	evaluate methods and	evaluate methods and	evaluate methods and	evaluate methods and	evaluate methods and
solutions within	solutions within	solutions within	solutions within	solutions within	solutions within
mathematics and in	mathematics and in	mathematics and in	mathematics and in	mathematics and in	mathematics and in
other contexts.	other contexts.	other contexts.	other contexts.	other contexts.	other contexts.
Key Learning	Key Learning	Key Learning	Key Learning Outcomes:	Key Learning Outcomes:	Key Learning
Outcomes:	Outcomes:	Outcomes:	Understand, recall and	Draw circles and arcs to a	Outcomes:
Indicate given values on	Use function machines	Distinguish between	use Pythagoras'	given radius or diameter.	Generate points and
a scale.	to find coordinates.	events which are	theorem in 2D.		plot graphs of simple
Convert between units	Identify, plot and draw	impossible, unlikely,	Justifying if a triangle is	Measure & draw lines to	quadratic functions,
of measure within one		even chance, likely and	right-angled or not using	nearest mm + angles to	then more general

system.	graphs	certain to occur. Mark	Pythagoras' theorem.	nearest degree.	quadratic functions.
system.	graphs	events/probabilities on		nearest degree.	
Make sensible	y=a, x=a, y=x, y= -x.	a probability scale of 0	Calculate the length of	Understand CW & ACW	Identify a line of
estimates of a range of		to 1.	the hypotenuse and of a	and use compass	symmetry of a
measures in everyday	Plot and draw graphs of		shorter side in a right-	directions.	quadratic graph.
settings.	straight line: y=mx + c.	Write probability using	angled triangle		
Find perimeter of 2D		fractions, percentages	(including surd and	Draw sketches of 3D	Find approximate
shapes.	Sketch a linear graph	or decimals.	decimal lengths).	solids: Know the terms	solutions to quadratic
	using the gradient & y-			face, edge, and vertex.	equations using a
Find area of 2D shapes.	intercept.	Find the probability of	Apply Pythagoras'		graph.
Find perimeter and area		an event happening	theorem with a triangle	Identify and sketch	
of composite shapes.	Identify parallel lines	using theoretical	drawn on a coordinate	planes of symmetry of	Interpret graphs of
Estimate surface area	from given equations.	probability.	grid.	3D solids.	quadratic functions
by rounding dimensions					from real-life problems.
to 1 significant figure.	Plot and draw graphs	List all the outcomes for	Calculate the length of a	Use isometric grids to	
	for equation. In form:	single events, and	line segment AB given	draw 2D representations	Identify and Interpret
Find Surface Area (SA)	ax + by = c.	combined events	pairs of points.	of 3D solids.	roots, intercepts and
of a prism.	Find the equation of a	systematically.			turning points or
Identify and name	straight line graph.		Understand, use and	Make accurate drawings	quadratic graphs.
common 3D shapes. Sketch nets of cuboids	Find the equation to a	Work out probabilities	recall the trigonometric	of 2D shapes using a	
	Find the equation to a	from frequency tables,	ratios sine, cosine and	ruler + protractor.	
and prisms.	line through one point	frequency trees and two	tan; apply them to find		
Find the volume of a	and a given gradient.	way tables.	angles and lengths of	Draw front & side	
prism.	Find annrovimate		general triangles in 2D	elevations & plans of	
	Find approximate	Record outcomes of	figures.	shapes made from	
Estimate volume of	solutions to a linear	probability experiments		simple solids.	
prism, by rounding	equation from a graph.	in tables.	Use trigonometric ratios		
lengths to 1 significant	Find the gradient of	Add simple	to solve 2D problems	Given the front + side	
figures.	Find the gradient of	probabilities.	including angles of	elevations & plan, sketch	
	straight lines from real		elevation and depression.	the 3D solid.	
Function machines.	life graphs.	Identify different		Understand congruence.	
State coordinates in all	Write ratios in their	mutually exclusive	Know exact values of	Construct SSS, SAS, ASA	
4 quadrants in 2D.		outcomes and know the	$\sin \theta$ and $\cos \theta$ for : θ =	& right angled triangles.	
	simplest form.	sum of the probabilities	30 [°] , 45 [°] ,60 [°] and 90 [°] . For		
Identify points from	Express the division of a	of all outcomes is 1.	$\tan \theta$ know exact values	Construct: perpendicular	
given coordinates.			for $: \theta = 30^{\circ}, 45^{\circ}, 60^{\circ}$	bisector of line/angle,	
	quantity into a number				

Find the coordinates of	of parts as a ratio.	Use 1 – p as the		perpendicular from a
points identified by	of parts as a ratio.	probability of an event	Understand and use	point to a line & angles
geometrical	Share a ratio in a given	not occurring, where p	compound measures:	of 45°, 90°
information in 2D.	quantity.	is the probability of the	density, pressure &	Draw and construct
	4	event occurring.	speed.	diagrams from given
Find the midpoint	Interpret a ratio to	5		instructions.
coordinates of a line	describe a situation.	Find a missing	Convert between metric	
segment.		probability from a list or	speed measures.	Use and interpret maps
	Use ratio to find 1	table, including	Read values in km/h and	and scale drawings.
Draw straight line	quantity when the	algebraic terms.	mph from a	
graphs for real-life	other is known.		speedometer.	Make an accurate scale
situations.		Find the probability of		drawing from a diagram.
	Write ratio as a fraction	an event happening	Use kinematics formulae	
Draw distance/time	+ as a linear function.	using relative frequency.	to calculate speed and	Use 3 figure bearings to
graphs and			acceleration.	specify direction.
velocity/time graphs.	Write ratio in form 1:m	Estimate the number		
	or m:1.	times of times an event	Express a given number	Mark on a diagram the
Work out time intervals	Lico ratio and he able	will occur, given the	as a percentage of	position of point B, given
for graph scales.	Use ratio and be able	probability and the	another number.	its bearing from point A.
	to: - compare a scale	number of trials	Coloulata norreantaga	Cives the bearing of
Interpret distance/time	model to real-life object	(experimental &	Calculate percentage	Given the bearing of
Interpret distance/time graphs.	to scale up recipes	theoretical).	profit or loss.	point A from B, workout the bearing of B from A.
Interpret information	and convert currencies.	Draw and use a sample	Make calculations	the bearing of B from A.
presented in a range of		space diagrams.	involving repeated and	Give bearings between
linear & non-linear	Write a ratio as a	space diagrams.	change not using a	the points on a map or a
graphs.	fraction.	Work out the	formula	scaled plan.
		probabilities from Venn	Find the original	
Interpret graphs with	Use proportion as	diagrams to represent	amount, given the final	Use accurate drawings to
negative values on	equality of ratios.	real life situation and	amount after a	solve bearings problems.
axes.	Solve word problems	also abstract sets of	percentage increase or	
Interpret gradient as	•	numbers.	decrease.	Solve locus problems
the rate of change in	involving direct and			including bearings.
distance/time &	indirect proportion.	Compare experimental	Use compound interest.	Define a quadratic
speed/time graphs,	Work out which	data & theoretical	Use measures in ratio	expression.
graphs of containers	product is better buy.	probability.	proportion problems:	
filling and emptying.			currency, conversion,	Multiply together two

	Scale up recipes. Convert between currencies. Solve problem using unitary method. Recognising direct &	Compare relative frequencies from samples of different sizes. Find the probability of success events (Several throw of a single dice).	rates of pay, best value. Set up, solve and interpret the answers in growth and decay problems. Understand and interpret equations/graph that	algebraic expressions with brackets. Square a linear expression $(x + 1)^2$ Factorise quadratic expressions of the form $x^2 + bx + c$. Factorise a quadratic	
	indirect proportion graphs. Understand direct proportion: y = kx .	Use tree diagrams to calculate the probability of independent/dependent events.	are in direct and indirect proportion. Understand X is inversely proportional y is equivalent to x is proportional to $\frac{1}{y}$.	expression $x^2 - a^2$ using a difference of two squares. Solve quadratic equations by factorising. Find roots of a quadratic function algebraically.	
 End of term 1 assessment to cover: Perimeter, area and volume Real-life graphs Straight line graphs Ratio Proportion 		End of term 2 assessment to cover:End of year assessment to cover:- Probability- Plans and elevations- Pythagoras and trigonometry- Constructions, loci an- Multiplicative reasoning- Quadratic equations: factorising- Quadratic equations:- Quadratic equations:		ns and bearings ns: expanding and	
Rationale for sequence: In Autumn term 1 learners are exposed to perimeter, area, volume questions and real life graphs. In KS3 learners are	Rationale for sequence: Learners must continue to use skills obtained from real life graphs. In KS3 students are familiar with the concept of a ratio. Here learners simplify and	Rationale for sequence: In KS3 students are taught to record, describe and analyse the frequency of outcomes of simple probability experiments involving randomness, fairness equally and	Rationale for sequence: In spring term 2 students are expected to develop their multiplicative reasoning skills and are expected to recall and retain Pythagoras theorem whilst being introduced	Rationale for sequence: In summer term 1 students focus on plans and elevations, constructions, loci and bearings, quadratic equations: expanding and factorising.	Rationale for sequence: In the last term of year 10 students discovering more depth of quadratics and its graphs and properties. Learners need to recall

Introduced to finding	divide an amount into a	unequally likely	to new trigonometry	In KS3 learners	skills obtained from the
the area of squares and	ratio. In Autumn term 1	outcomes using the	content in a right-angled	previously can measure	summer term 1 on
rectangles. They are	in KS4 learners are now	appropriate language	triangle.	and draw lines to the	quadratic graphs and
also expected to find	interpreting a ratio to		thangle.	nearest mm and angles	
		and the 0-1 probability scale. They recall and	Learners have	•	develop skills on its
the area of shapes on a	describe a situation.	1	previously been exposed	to the nearest degree. In	properties this term.
centimetre grid by	Students will then be	retain that the		KS4 learners need to	Dues is value students
counting squares. At	introduced to write a	probability of all	to the concept of	recall these skills by	Previously students
the same time students	ratio in the form of 1:n	outcomes sum to 1.	Pythagoras theorem. In	drawing sketches of 3D	learnt how to factorise
should be able to	or n:1 to find one		KS4 they have to extend	solids identify and	quadratic equations
recognise that shapes	quantity when the	In KS4 students are	their skills by applying	understand what the	where the coefficient of
with the same area	other is unknown.	expected to recall and	Pythagoras' theorem	terms face, edge and	x ² is 1, then place
have different	Learners will learn how	retain how to draw and	with a triangle drawn on	vertex mean.	these into brackets and
perimeters and vice	to express ratio by parts	use sample space	a coordinate grid, find		can begin to solve for x.
versa.	and fractions. Students	diagrams. They also	the hypotenuse and	This term learners will be	Students are exposed
	discover this through	recall information on	shorter lengths of a	introduced to drawing	to new vocabulary such
From using the formula	real life scaling	how to find a missing	triangle from a right	front and side elevations	as estimates and roots
for an area of:	problems. A real life	probability from a list or	angle triangle. They will	and plans of shapes	(where it meets the x
trapezium, triangle and	scenario can be applied	table including algebraic	need to recall skills on	made from simple solids	axis).
parallelogram, students	when scaling up or	terms using their prior	leaving answers in surd	(recall from previous	
are able to solve	down recipes.	algebra skills.	form and to any correct	skills obtained) and give	This term students are
problem solving			decimal point,	the front and side	required to generate
questions on composite	Linking proportion and	Learners this term begin	significant figure.	elevations and plans and	points and plot graphs
shapes. (2 or more	ratio with KS3, students	to develop skills on find		sketch these 3D solids.	of simple quadratic
shapes).	have been taught to	probabilities using a	Learners will also	Here learners discover	functions and more
	express and simplify	Venn diagram to	explore real life aspects	the importance of plans	complex quadratics
Prior skills of rounding	ratio; unitary ratio and	represent real life	of Pythagoras theorem	and elevations to real life	using a table of values.
to decimal places,	divide into ratio; solve	situations and abstract	and trigonometry SOH	jobs in mechanical	Here students will need
significant figures will	problems involving	set of numbers. Here	CAH TOA using	engineering, architects	to recall and recap skills
be used when	proportion i.e. recipe	they explore how Venn	trigonometric ratios to	when constructing initial	on algebra previously
estimating the surface	and exchange rates	diagrams are used in	solve 2D problems	building plans.	obtained on
area and volume of 3D		real life jobs such as	including angles or		substitution and need
shapes. Learners will be	In KS4 building on their	scientists studying	elevation and	Leaners have previously	to be careful when
taught in the Autumn	previous knowledge,	human health and	depression for example	been introduced to	substituting negative
term 1 to sketch nets of	learners will be able to	medicines.	pilots when they are	construction and loci and	values into squares
cuboids and prisms at	solve complex problems		landing and flying back	bearings. In KS4 learners	ensuring brackets are
the same time be able	using the	Leaners are also	to airports.	understand the	used to avoid common
to identify and name	understanding of direct	introduced to		importance of	calculator mistakes.

common 3D shapes.	and inverse	calculating the	In KS3 learners have	congruency and recall	
	proportions. Most of	probability of	previously worked with	skills on constructing SSS,	Students this term also
	the other concepts that	independent and	percentage multipliers	SAS, ASA and right angles	deepen their
	requires multiplicative	dependent combined	(increase and decrease.)	triangles using a ruler	understanding on
	reasoning.	events, including using	In KS4 they need to	compass and protractor.	properties of quadratics
		tree diagrams and other	recall and retain	Learners are expected to	graphs by identifying a
	Furthermore, students	representations, and	information and	use loci by drawing and	line of symmetry on a
	need to express a	know the underlying	understand the	constructing diagrams	quadratic graph,
	multiplicative	assumptions.	language of a question	from given instructions	interpret and identify
	relationship between		for depreciation (loses	and is introduced to skills	roots, intercepts and
	two quantities as a ratio		value)	on constructing	turning points.
	or a fraction and show		interest/appreciation	perpendicular bisectors	
	this on a graph.		and apply skills retained	of a line.	Students will explore
	The equation of a		on percentage		real life jobs where
	straight-line can been		multipliers to compound	Learners explore how	quadratic graphs are
	as a relation between		interest questions. Here	important bearing and	used i.e. astronomers,
	two quantities and the		students explore real	loci are for architects,	physicists and
	table representation is		life applications of	pilots and jobs, which	economists.
	closely related to		compound interest (I.e.	involve a boat sailing i.e.	
	proportions. The		interest gained from a	fisherman.	
	concept of proportion		saving account after a		
	and ratio relies on		number of years.)	This term students are	
	multiplicative		Students will explore	introduced to what a	
	reasoning, which		field of real life jobs	quadratic equation and	
	appears in most		such as finance when	explore the general form	
	mathematical contexts.		being introduced to this	of a quadratic is ax^2+	
	From recipe and		topic.	bx+c where a, b and c are	
	exchange rates, from			integers. Previously in	
	graphs to interpreting		In KS4 learners are also	KS3 students can expand	
	the gradient at a point		revisiting skills obtained	single brackets and move	
	on a curve as the		from previous terms on	onto expanding double	
	instantaneous rate of		real lie graphs by using	brackets in KS4 and	
	change, from		ratio and proportion	simplify answers in it's	
	Pythagoras to		problems: currency	simplest form by	
	trigonometry, from		conversions, rates of	collecting like terms.	
	scaling a length to find		pay and best value.		
	the relative area and		Leaners will also set up	Learners are also	

	volume of a given 3D		and solve and interpret	introduced to difference	
	shape.		problems involving	of two squares a type of	
			growth and decay using	quadratic and how to	
			prior skills from graph	factorise these.	
			work.		
				Learners in this term	
				explore how to factorise	
				quadratics where the	
				coefficient of x^2 is 1 and	
				then can apply these to	
				problem solving skills	
				involving composite	
				shapes.	
	ring questions/ retention ar	nd recall and promoting cul	tural capital		
Numeracy:					
Assessed throughout the	elesson				
	ties to develop cultural cap	ital (including careers, WR	L and SMSC):		
In maths lessons:					
		ng on their answers, reason	-		
			nes and consequences. The	ir Moral duty is to be able to make the right	: choices
	d to reach the correct answ	•			
-		_		their thinking and group work	C
	-		-	s includes different multiplication methods f	
				to where Trigonometry was first used. We t	•
develop an awareness of	t noth the history of methe	alongside the realisation th	at many tonics we still lear	n today have travelled across the world and	aro ucor

international