Programme of study for Year 8

Understand what is meant by a sensible degree of accuracy

Estimate numerical calculations

Estimate and check if solutions to problems are of the correct magnitude

Determine whether calculations using rounding will give an underestimate or overestimate

Understand the impact of rounding errors when using a calculator, and the way that these can be compounded to result in large inaccuracies

Calculate possible errors expressed using inequality notation $\mathrm{a}<\mathrm{x} \leq \mathrm{b}$

Sequences:
Appreciate that a sequence is a succession of terms formed according to a rule

Understand that a sequence can be generated and described using term-to-term approaches

Understand that a sequence can be

Understand that a family of linear equations can all have the same solution

Solve a linear equation requiring a single additive step

Solve a linear equation requiring a single multiplicative step

Understand that an equation needs to be in a format to be 'ready' to be solved, through collecting like terms on each side of the equation

Know that when an

 additive step and a multiplicative step are required, the order of operations will not affect the solutionRecognise that equations with unknowns on both sides of the equation can be manipulated so that the unknowns are on one side

Solve complex linear equations, including those involving reciprocals Appreciate the significance of the bracket in an equation

Recognise that there is more than one way to remove a bracket when solving an equation

Solve equations involving brackets where

Describe one number as a percentage of another

Find a percentage of a quantity using a multiplier

Calculate percentage changes (increases and decreases

Calculate the original value, given the final value after a stated percentage increase or decrease

Find the percentage increase or decrease, given start and finish quantities

Understand the connection between multiplicative relationships and direct proportion

Recognise direct proportion and use in a range of contexts including compound measures

Recognise and use

 inverse proportionality in a range of contextsUnderstand what the mode is measuring, how it is measuring it and identify the mode from data presented in a range of different ways

Understand what the range is measuring, how it is measuring it and calculate the range from data presented in a range of different ways

Construct bar charts from data presented in a number of different ways

Construct pie charts from data presented in a number of different ways

Construct pictograms from data presented in a number of different ways

Construct scatter graphs from data presented in a number of different ways

Perimeter, Area and Volume

Understand the concept of surface area and find the surface area of 3D such cuboids and prisms in an efficient way

Be aware that all prisms have two congruent polygonal parallel faces
angle properties of equilateral, isosceles and right- angled triangles and special quadrilaterals, explaining reasoning with diagrams and text, classify quadrilaterals by their geometrical properties
know that if two 2-D shapes are congruent, corresponding sides and angles are equal.

Learners to use a ruler and protractor to: measure and draw lines to the nearest millimetre and angles, including reflex angles, to the nearest degree. construct a triangle, given two sides and the included angle (SAS) or two angles and the included side (ASA)

Use ICT to explore constructions. use ruler and protractor to construct simple nets of 3D shapes,
e.g. cuboid, regular tetrahedron, squarebased pyramid, triangular prism

Be aware that the diagonals of a rhombus bisect the angles

Use the properties of a rhombus to construct a perpendicular bisector of a line segment

Use the properties of a rhombus to construct a perpendicular to a given line through a given point

Use the properties of a rhombus to construct an angle bisector

End of term 1 assessment to cover:

Rationale for sequence:

The elements here build on the work done in Year 7 autumn term and now include studying estimation and rounding.

It is essential that students are aware of the general structure of the place-value system as being based on powers of ten and begin to see how this naturally extends to decimals. This learning will support students' work on significant figures and standard form, as students who can express numbers (including very large and very small numbers) in these different ways are more likely to have a feel for the size of such numbers and where they fit in the number system.

It is also important to emphasise the use of measures in real-life contexts. This will support students in understanding that measuring is always to a certain degree of accuracy. This teaching will then support students' understanding of and facility with estimating and rounding - essential skills for working

Rationale for sequence:

It is important for students to appreciate that number and algebra are connected. The solving of equations is essentially concerned with operations on as yet unknown numbers. At Key Stage 3, this work builds on students' introduction to the language of algebra at Key Stage 2 and at year 7 Autumn2. It explores how linear equations are effectively the formulation of a series of operations on unknown numbers, and how the solving of such equations is concerned with undoing these operations to find the value of the unknown.

Building on Key Stage 2 experiences, this collection of key ideas explores how simple, one-step linear equations are the formulation of one operation on an unknown number, and how these equations can be solved by undoing the operation to find the value of the unknown. Similarly, students will be exploring In much more depth to linear equations that requires more then one step to do the "undoing".

End of term 2 assessment to cover:

Rationale for sequence:
 In the Autumn term students

 will have explored fractions and ratios and it is important that this is now connected to work focusing on percentages and proportionality so that students do not experience them as distinct topics with no obvious connections. Percentages, fractions, proportionality and ratio can all be considered as contexts in which multiplicative relationships are used and explored. Maintaining consistency with the vocabulary and imagery used in all contexts will support students in their understanding that the same mathematical principles are involved. In many cases, there will be several different possible representations that could be used to help understand the mathematical structure of a situation. An important aspect of work with students will be to consider the relative usefulness and efficiency of different representations and approachesExploring a range of real-life contexts (including use of

Rationale for sequence:

At Key Stage 2, students encountered the concept of central tendency and learnt how to calculate the (arithmetic) mean. At Key Stage 3, they will develop their knowledge of calculating measures of central tendency to include the mode and median, work with grouped data, and be introduced to a measure of spread in statistics: range. This will enable students to engage in more sophisticated data analysis.

Students will construct scatter graphs for the first time, building on the representations covered at Key Stage 2 - bar charts, pie charts and pictograms. Constructing pie charts at Key Stage 3 will involve students making connections with angles, fractions and percentages, and using rulers, protractors and angle measurers.

Additionally, students should have opportunities to describe simple mathematical relationships between two variables (bivariate data) in

End of year assessment to cover:

 End of year ExamRationale for sequence:
Students will have had opportunities to develop their spatial awareness and geometrical intuition in Key Stage 2 through situations involving angles (angles meeting at a point, angles on a straight line, vertically opposite angles and angles in regular polygons) and similar shapes. They will be aware of the geometrical facts and properties inherent in these situations. An important development throughout Key Stage 3 is to be able to reason and construct proofs for why such facts and properties hold and begin to understand the nature of mathematical proof.

In Key Stage 3, students will develop their understanding of what is meant by mathematical proof. This is likely to include understanding proof as a form of convincing argument based on logical deduction and an expression of generalisation, as opposed to checking against a few specific cases. Students are also developing an understanding about the conventions of

Rationale for sequence:
In Key Stage 2, students will have learnt about the properties of certain geometric shapes and used these properties to compare and classify shapes. They will also have had experience of drawing certain shapes using a ruler and angle measurer. Developing this work in Key Stage 3, students will learn the ruler and compass constructions of:

- triangles of given lengths
- a perpendicular bisector of a line segment
- a perpendicular to a given line through a given point
- an angle bisector.

An important awareness is that these constructions are based on the geometrical properties of a few key shapes (a circle, an isosceles triangle and a rhombus). A deep understanding and awareness of these geometrical properties will support students in gaining a conceptual overview of these constructions and guard against constructions being learnt mechanically as a set of procedural steps.
with real-life situations involving contextualised data.

It is important for students to develop a strong sense of the size of numbers and be able to use various methods of rounding, especially when giving answers in context. Rounding large numbers is particularly useful when estimating (for example, crowds at a football match or winnings in a lottery).

Students began to consider sequences in Key Stage 1, when step counting to learn times tables and when looking at the composition of numbers. In Key Stage 2, they were introduced to the use of symbols and letters to represent variables and unknowns in familiar mathematical situations and began to generalise number patterns.

Students will have explored non-numerical (shape) and numerical sequences, noticed a pattern, described the pattern in words and found the next term in the sequence from the previous term.
It is important that students have time to develop a full understanding of the connection between the notation and the sequence and come to see the nth

It is important that students do not just learn and blindly follow a set of procedural rules for solving equations without this sense of what a solution means. Deep, conceptual understanding allows students to be fluent and flexible problem solvers. Therefor the use of different representations will help secure solving linear equations which students can use in many other topics in KS4.

In the summer term of Year 7 students will have explored fractions and ratios and it is important that this is now connected to work focusing further calculations with fractions and conceptualised how fraction calculation is done before moving on to ratio, percentages and proportionality so that students do not experience them as distinct topics with no obvious connections. Percentages, fractions, proportionality and ratio can all be considered as contexts in which multiplicative relationships are used and explored. Maintaining consistency with the vocabulary and imagery used in all contexts will support students in their understanding that the same mathematical principles are involved. In many cases, there will be several different
compound measures) will further support students' understanding of proportionality. Stressing the notion that, when one measure doubles (or trebles or is multiplied by any scale factor) so too does the other, can usefully highlight the terminology of 'direct' proportion and this can be contrasted with inverse proportion, which is a key idea to introduce at Key Stage 3.
observational and
experimental contexts, and to illustrate such relationships using scatter graphs. This will be developed further in Key Stage 4, alongside more sophisticated measures of central tendency (including modal class) and spread (including quartiles and interquartile range).

At Key Stage 2, students will have had the opportunity to measure the perimeter of simple 2D shapes; find the area by counting squares; and estimate volume by counting blocks. They should have calculated the area of rectangles, triangles and parallelograms, and the volume of cubes and cuboids using formulae.

They will now build on this to learn about the perimeter (circumference) of circles and that the ratio between circumference and diameter is the same for all circles. When calculating areas, this will include students using their knowledge of area of circles and the surface area of prisms.

Additionally, the concept of surface area will provide an ideal opportunity for students to make connections between two and three dimensions and
communicating proof, including the use of language such as 'if ... then', 'therefore' and 'because', and correct and unambiguous use of mathematical symbolism.

Students can find it difficult to memorise the various steps in creating constructions when they do not link this work to other knowledge about geometrical properties. They will be helped considerably if they are aware that constructing a perpendicular bisector of a line segment is not an isolated concept but linked to the properties of circles and rhombuses.

term as a way of expressing the structure of every term in the sequence. Work on sequences both here and later in Key Stage 3 provides the foundation for exploring quadratic sequences and simple geometric progressions in Key Stage 4.	possible representations that could be used to help understand the mathematical structure of a situation.		apply and consolidate their understanding of the area and properties of 3D shapes from Key Stage 2. Students will be familiar with finding the volume of cubes and cuboids from Key Stage 2 and will have used the formula Volume $=$ width \times height \times length (or similar) to calculate volumes. At Key Stage 3, these ideas are developed to include the volume of prisms more generally.		
Reading / literacy: Key words/LOs/ problem solving questions/ retention and recall and promoting cultural capital	Reading / literacy: Key words/LOs/ problem solving questions/ retention and recall and promoting cultural capital	Reading / literacy: Key words/LOs/ problem solving questions/ retention and recall and promoting cultural capital	Reading / literacy: Key words/LOs/ problem solving questions/ retention and recall and promoting cultural capital	Reading / literacy: Key words/LOs/ problem solving questions/ retention and recall and promoting cultural capital	Reading / literacy: Key words/LOs/ problem solving questions/retention and recall and promoting cultural capital
Numeracy: Assessed throughout the lesson					
Enrichment / opportunities to develop cultural capital (including careers, WRL and SMSC): In maths lessons: Spiritual growth is encouraged by students reflecting on their answers, reasoning and in class discussions Learners are made aware of choices they make may results to different outcomes and consequences. Their Moral duty is to be able to make the right choices in terms of behaviour and to reach the correct answers/conclusions Leaners Social developments is encouraged through discussions, sharing ideas, peer marking, articulating their thinking and group work Leaners are exposed to different topics and their links to different Culture throughout the curriculum. This includes different multiplication methods from Egypt, Russia and China, Pythagoras' Theorem from Greece, algebra from the Middle East and debates as to where Trigonometry was first used. We try to develop an awareness of both the history of maths alongside the realisation that many topics we still learn today have travelled across the world and are used international					

