Programme of study for Year 8

Autumn (1 st term)	Autumn (2 nd term)	Spring (1 st term)	Spring (2 nd Term)	Summer (1 st term)	Summer (2 nd term)
Other timescale:	Other timescale:	Other timescale:	Other timescale:	Other timescale:	Other timescale:
To: October	To: December	To: February	To: April	To: May	To: July
Topic / Key Question:	Topic / Key Question:	Topic / Key Question:	Topic / Key Question:	Topic / Key Question:	Topic / Key Question:
 Rounding and estimation Sequences 	 Solving Linear Equations Multiplicative relationship (Fractions) 	 Multiplicative relationship Ratio Percentage 	 Statistical representation and measure Perimeter, Area and Volume 	Geometrical Properties: Polygons	• Construction
Key Learning Outcomes:	Key Learning Outcomes:	Key Learning Outcomes:	Key Learning Outcomes:	Key Learning Outcomes:	Key Learning Outcomes:
Leaners will:	Leaners will:	Leaners will:	Leaners will:	Leaners will:	Learners will:
Rounding and estimation:	Solving Linear Equations:	Multiplicative relationship:	Statistical representation and measure	Geometrical Properties	Construction
Round numbers to any number of decimal places	Recognise that there are many different types of equations of which linear	Be able to divide a quantity into a given ratio	Understand what the mean is measuring, how it is measuring it and	Use correctly the vocabulary, notation and labelling conventions for	Understand a circle as the locus of a point equidistant from a fixed point
Understand the concept of significant figures	is one type Understand that in an equation the two sides of	Be able to determine the whole, given one part and the ratio	calculate the mean from data presented in a range of different ways	lines, angles and shapes Identify parallel and perpendicular lines: know	Use intersecting circles to construct triangles and rhombuses from given
required number of significant figures	the 'equals' sign balance	Be able to determine one part, given the other part	Understand what the median is measuring how	the sum of angles at a point, on a straight line	Be owere that the
Round decimals to a required number of significant figures	Understand that a solution is a value that makes the two sides of an equation balance	and the ratio Use ratio to describe rates (e.g. exchange rates,	it is measuring it and find the median from data presented in a range of different ways	and in a triangle; recognise vertically opposite angles	be aware that the diagonals of a rhombus bisect one another at right angles
		conversions, cogs, etc.)		problems using side and	

Inderstand what is meant	Inderstand that a family of	Describe one number as a	Inderstand what the	angle properties of	Be aware that the
by a sonsible degree of	linear equations can all	percentage of another	mode is measuring how it	angle properties of	diagonals of a rhombus
	here the same solution	percentage of another	in monouring it and identify	right angled triangles and	bigget the angles
accuracy	have the same solution	Find a nereentane of a	the mode from date	ngnt- angled thangles and	bisect the angles
	Calva a linear any stice	Find a percentage of a		special quadrilaterais,	
Estimate numerical	Solve a linear equation	quantity using a multiplier	presented in a range of	explaining reasoning	Use the properties of a
calculations	requiring a single additive		different ways	with diagrams and text,	rhombus to construct a
	step	Calculate percentage		classify quadrilaterals by	perpendicular bisector of a
Estimate and check if		changes (increases and	Understand what the	their geometrical	line segment
solutions to problems are	Solve a linear equation	decreases)	range is measuring, how it	properties	
of the correct magnitude	requiring a single		is measuring it and		Use the properties of a
	multiplicative step	Calculate the original	calculate the range from	know that if two 2-D	rhombus to construct a
Determine whether		value, given the final value	data presented in a range	shapes are congruent,	perpendicular to a given
calculations using	Understand that an	after a stated percentage	of different ways	corresponding sides and	line through a given point
rounding will give an	equation needs to be in a	increase or decrease		angles are equal.	
underestimate or	format to be 'ready' to be		Construct bar charts from		Use the properties of a
overestimate	solved through collecting	Find the percentage	data presented in a		rhombus to construct an
overestimate	like terms on each side of	increase or decrease	number of different wave	Loorpore to use a ruler	angle bisector
Linderstand the impact of	the equation	given start and finish	number of unerent ways	Learners to use a ruler	angle disector
	the equation		Construct nie shorte from	and protractor to.	
rounding errors when		quantities	Construct ple charts from	measure and draw lines to	
using a calculator, and the	Know that when an		data presented in a	the nearest	
way that these can be	additive step and a	Understand the connection	number of different ways	millimetre and angles,	
compounded to result in	multiplicative step are	between multiplicative		including reflex angles, to	
large inaccuracies	required, the order of	relationships and direct	Construct pictograms from	the nearest degree.	
	operations will not affect	proportion	data presented in a	construct a triangle, given	
Calculate possible errors	the solution		number of different ways	two sides and the included	
expressed using inequality		Recognise direct		angle (SAS) or two angles	
notation a < x ≤ b	Recognise that equations	proportion and use in a	Construct scatter graphs	and the included side	
	with unknowns on both	range of contexts including	from data presented in a	(ASA)	
	sides of the equation can	compound measures	number of different ways		
	be manipulated so that the			Use ICT to explore	
	unknowns are on one side	Recognise and use		constructions.	
Sequences:		inverse proportionality in a		use ruler and protractor to	
Appreciate that a	Solve complex linear	range of contexts		construct simple nets of 3-	
	equations including those	Tange of contexts		D shapes	
of terms formed according	involving reciprocals			e a cuboid regular	
to a rule	Approciate the significance		Parimeter Area and	totrahodron square	
to a rule	Appreciate the significance		Volumo	based pyramid triangular	
	of the blacket in an		volume		
	equation			prism	
			Understand the concept of		
Understand that a	Recognise that there is		surface area and find the		
sequence can be	more than one way to		surface area of 3D such		
generated and described	remove a bracket when		cuboids and prisms in an		
using term-to-term	solving an equation		efficient way		
approaches					
	Solve equations involving		Be aware that all prisms		
Understand that a	brackets where		have two congruent		
sequence can be			polygonal parallel faces		

generated and described	simplification is necessary	(bases) with parallelogram	
by a position-to-term rule	first	faces joining the	
		corresponding vertices of	
Understand that any term	Multiplicative	the bases	
in an arithmetic sequence	Relationships (Fractions)		
can be expressed in terms		Use the constant cross-	
of its position in the		sectional area property of	
sequence (nth term)	Use a scaling diagram to	prisms and cylinders to	
	represent a multiplicative	determine their volume	
Determine whether a	relationship and connect to		
number is a term of a	other known		
given arithmetic sequence	representations		
	Find a fraction of a given		
	amount		
	Given a fraction and the		
	result, find the original		
	amount		
	Express one number as a		
	fraction of another		
	Be able to divide a		
	quantity into a given ratio		

End of term 1 assessment to cover:		End of term 2 assessment to cover:		End of year assessment to cover:	
				End of vear Exam	
Rationale for sequence:	Rationale for sequence:	Rationale for sequence:	Rationale for sequence:	Rationale for sequence:	Rationale for sequence:
	•	•	•		•
The elements here build on	It is important for students	In the Autumn term students	At Key Stage 2, students	Students will have had	In Key Stage 2, students will
the work done in Year 7	to appreciate that number	will have explored fractions	encountered the concept of	opportunities to develop	have learnt about the
autumn term and now	and algebra are connected.	and ratios and it is important	central tendency and learnt	their spatial awareness and	properties of certain
include studying estimation	The solving of equations is	that this is now connected to	how to calculate the	geometrical intuition in Key	geometric shapes and used
and rounding.	essentially concerned with	work focusing on	(arithmetic) mean. At Key	Stage 2 through situations	these properties to compare
	operations on as yet	percentages and	Stage 3, they will develop	involving angles (angles	and classify shapes. They will
It is essential that students	unknown numbers. At Key	proportionality so that	their knowledge of	meeting at a point, angles on	also have had experience of
are aware of the general	Stage 3, this work builds on	students do not experience	calculating measures of	a straight line, vertically	drawing certain shapes using
structure of the place-value	students' introduction to the	them as distinct topics with	central tendency to include	opposite angles and angles in	a ruler and angle measurer.
system as being based on	language of algebra at Key	no obvious connections.	the mode and median, work	regular polygons) and similar	Developing this work in Key
powers of ten and begin to	Stage 2 and at year 7	Percentages, fractions,	with grouped data, and be	shapes. They will be aware of	Stage 3, students will learn
see how this naturally	Autumn2. It explores how	proportionality and ratio can	introduced to a measure of	the geometrical facts and	the ruler and compass
extends to decimals. This	linear equations are	all be considered as contexts	spread in statistics: range.	properties inherent in these	constructions of:
learning will support	effectively the formulation of	in which multiplicative	This will enable students to	situations. An important	 triangles of given lengths
students' work on significant	a series of operations on	relationships are used and	engage in more sophisticated	development throughout Key	• a perpendicular bisector of
figures and standard form, as	unknown numbers, and how	explored. Maintaining	data analysis.	Stage 3 is to be able to	a line segment
students who can express	the solving of such equations	consistency with the		reason and construct proofs	
numbers (including very	is concerned with undoing	vocabulary and imagery used	Students will construct	for why such facts and	 a perpendicular to a given
large and very small	these operations to find the	in all contexts will support	scatter graphs for the first	properties hold and begin to	line through a given point
numbers) in these different	value of the unknown.	students in their	time, building on the	understand the nature of	 an angle bisector.
ways are more likely to have		understanding that the same	representations covered at	mathematical proof.	_
a feel for the size of such	Building on Key Stage 2	mathematical principles are	Key Stage 2 – bar charts, pie		An important awareness is
numbers and where they fit	experiences, this collection	involved. In many cases,	charts and pictograms.	In Key Stage 3, students will	that these constructions are
in the number system.	of key ideas explores how	there will be several different	Constructing pie charts at	develop their understanding	based on the geometrical
	simple, one-step linear	possible representations that	Key Stage 3 will involve	of what is meant by	properties of a few key
It is also important to	equations are the	could be used to help	students making connections	mathematical proof. This is	shapes (a circle, an isosceles
emphasise the use of	formulation of one operation	understand the	with angles, fractions and	likely to include	triangle and a rhombus). A
measures in real-life	on an unknown number, and	mathematical structure of a	percentages, and using	understanding proof as a	deep understanding and
contexts. This will support	how these equations can be	situation. An important	rulers, protractors and angle	form of convincing argument	awareness of these
students in understanding	solved by undoing the	aspect of work with students	measurers.	based on logical deduction	geometrical properties will
that measuring is always to a	operation to find the value of	will be to consider the		and an expression of	support students in gaining a
certain degree of accuracy.	the unknown. Similarly,	relative usefulness and	Additionally, students should	generalisation, as opposed to	conceptual overview of these
This teaching will then	students will be exploring In	efficiency of different	have opportunities to	checking against a few	constructions and guard
support students'	much more depth to linear	representations and	describe simple	specific cases. Students are	against constructions being
understanding of and facility	equations that requires more	approaches.	mathematical relationships	also developing an	learnt mechanically as a set
with estimating and rounding	then one step to do the	Exploring a range of real-life	between two variables	understanding about the	of procedural steps.
 – essential skills for working 	"undoing".	contexts (including use of	(bivariate data) in	conventions of	

with real-life situations	It is important that students	compound measures) will	observational and	communicating proof,	Students can find it difficult
involving contextualised	do not just learn and blindly	further support students'	experimental contexts, and	including the use of language	to memorise the various
data.	follow a set of procedural	understanding of	to illustrate such	such as 'if then',	steps in creating
	rules for solving equations	proportionality. Stressing the	relationships using scatter	'therefore' and 'because',	constructions when they do
It is important for students	without this sense of what a	notion that, when one	graphs. This will be	and correct and	not link this work to other
to develop a strong sense of	solution means. Deep,	measure doubles (or trebles	developed further in Key	unambiguous use of	knowledge about
the size of numbers and be	conceptual understanding	or is multiplied by any scale	Stage 4, alongside more	mathematical symbolism.	geometrical properties. They
able to use various methods	allows students to be fluent	factor) so too does the other,	sophisticated measures of		will be helped considerably if
of rounding, especially when	and flexible problem solvers.	can usefully highlight the	central tendency (including		they are aware that
giving answers in context.	Therefor the use of different	terminology of 'direct'	modal class) and spread		constructing a perpendicular
Rounding large numbers is	representations will help	proportion and this can be	(including quartiles and inter-		bisector of a line segment is
particularly useful when	secure solving linear	contrasted with inverse	quartile range).		not an isolated concept but
estimating (for example,	equations which students	proportion, which is a key			linked to the properties of
crowds at a football match or	can use in many other topics	idea to introduce at Key	At Key Stage 2, students will		circles and rhombuses.
winnings in a lottery).	in KS4.	Stage 3.	have had the opportunity to		
			measure the perimeter of		
Students began to consider	In the summer term of Year 7		simple 2D shapes; find the		
sequences in Key Stage 1,	students will have explored		area by counting squares;		
when step counting to learn	fractions and ratios and it is		and estimate volume by		
times tables and when	important that this is now		counting blocks. They should		
looking at the composition of	connected to work focusing		have calculated the area of		
numbers. In Key Stage 2,	further calculations with		rectangles, triangles and		
they were introduced to the	fractions and conceptualised		parallelograms, and the		
use of symbols and letters to	how fraction calculation is		volume of cubes and cuboids		
represent variables and	done before moving on to		using formulae.		
unknowns in familiar	ratio, percentages and				
mathematical situations and	proportionality so that		They will now build on this to		
began to generalise number	students do not experience		learn about the perimeter		
patterns.	them as distinct topics with		(circumference) of circles		
	no obvious connections.		and that the ratio between		
Students will have explored	Percentages, fractions,		circumference and diameter		
non-numerical (shape) and	proportionality and ratio can		is the same for all circles.		
numerical sequences,	all be considered as contexts		When calculating areas, this		
noticed a pattern, described	in which multiplicative		will include students using		
the pattern in words and	relationships are used and		their knowledge of area of		
found the next term in the	explored. Maintaining		circles and the surface area		
sequence from the previous	consistency with the		of prisms.		
term.	vocabulary and imagery used				
It is important that students	in all contexts will support		Additionally, the concept of		
have time to develop a full	students in their		surface area will provide an		
understanding of the	understanding that the same		ideal opportunity for		
connection between the	mathematical principles are		students to make		
notation and the sequence	involved. In many cases,		connections between two		
and come to see the nth	there will be several different		and three dimensions and		

term as a way of expressing the structure of every term in the sequence. Work on sequences both here and later in Key Stage 3 provides the foundation for exploring quadratic sequences and simple geometric progressions in Key Stage 4.	possible representations that could be used to help understand the mathematical structure of a situation.		apply and consolidate their understanding of the area and properties of 3D shapes from Key Stage 2. Students will be familiar with finding the volume of cubes and cuboids from Key Stage 2 and will have used the formula Volume = width × height × length (or similar) to calculate volumes. At Key Stage 3, these ideas are developed to include the volume of prisms more generally.		
Reading / literacy:	Reading / literacy:	Reading / literacy:	Reading / literacy:	Reading / literacy:	Reading / literacy:
Key words/LOs/	Key words/LOs/	Key words/LOs/	Key words/LOs/	Key words/LOs/	Key words/LOs/
problem solving	problem solving	problem solving	problem solving	problem solving	problem solving
questions/ retention	questions/ retention	questions/ retention	questions/ retention	questions/ retention	questions/ retention
and recall and	and recall and	and recall and	and recall and	and recall and	and recall and
promoting cultural	promoting cultural	promoting cultural	promoting cultural	promoting cultural	promoting cultural
capital	capital	capital	capital	capital	capital
Numeracy:	Numeracy:	Numeracy:	Numeracy:	Numeracy:	Numeracy:
Assessed throughout	Assessed throughout	Assessed throughout	Assessed throughout	Assessed throughout	Assessed throughout
the lesson	the lesson	the lesson	the lesson	the lesson	the lesson

Enrichment / opportunities to develop cultural capital (including careers, WRL and SMSC):

In maths lessons:

Spiritual growth is encouraged by students reflecting on their answers, reasoning and in class discussions

Learners are made aware of choices they make may results to different outcomes and consequences. Their **Moral** duty is to be able to make the right choices in terms of behaviour and to reach the correct answers/conclusions

Leaners **Social** developments is encouraged through discussions, sharing ideas, peer marking, articulating their thinking and group work

Leaners are exposed to different topics and their links to different Culture throughout the curriculum. This includes different multiplication methods from Egypt, Russia and China,

Pythagoras' Theorem from Greece, algebra from the Middle East and debates as to where Trigonometry was first used. We try to develop an awareness of both the history of maths

alongside the realisation that many topics we still learn today have travelled across the world and are used international