On – Line Programme of Learning for Year 12 – Further Mathematics

Autumn (1 st term)	Autumn (2 nd term)	Spring (1 st term)	Spring (2 nd term)	Summer (1 st term)	Summer (2 nd term)
From: September	From: November	From: January	From: March	From: May	From: June
To: October	To: December	To: February	To: April	To: June	To: July
Topic: - Core Pure 1 (AS)	Topic: - Core Pure 1 (AS)	Topic – Further Pure 1 (AS)	Topic – Further Pure 1 (AS)	Revision for exams	Internal Exams
Complex numbers	Series	Vectors	Inequalities		
Argand diagrams	Roots of Polynomials	Conic Sections	The t-formulae	External exams will be sat	Topic – A2 Pure Maths*
Matrices	Proof by Induction	Topic – Further Mechanics 1	Numerical Methods	this term.	Trigonometry
Linear Transformations	Vectors	(AS)	Topic – Further Mechanics 1		Differentiation
		Momentum and Impulse	(AS)	Topic – A2 Pure Maths*	Integration**
		Work, energy and power	Elastic collisions in one	Trigonometry	
			dimension	Differentiation	*For those continuing into
			Topic: - Core Pure 1 (AS)		year 13 only
			Volumes of Revolution	*For those continuing into	**If time allows due to
				year 13 only	exams and work experience
Key Skills – CP1	Key Skills – CP1	Key Skills – FP1	Key Skills – CP1	Key Skills – A2 Pure	Skills / Key Questions – Pure
Understand and use the	Understand that the Greek	Find the vector product of	Find the volume of revolution	Use approximate	Prove and use the addition
definitions of imaginary and	letter sigma, Σ , is used in	two vectors.	when a curve is rotated	trigonometric values for small	formulae.
complex numbers.	mathematics to represent a	Be able to interpret the	about either the x-axis or the	angles.	Understand and use the
Add, subtract, multiply and	sum.	modulus of the vector	y-axis.	Understand the definitions of	double-angle formulae.
divide complex numbers.	Use standard formulae for	product as an area.	Model real-life objects using	the reciprocal functions -	Solve trigonometric
Understand the definition of	series summations to prove	Find the scale triple product	volumes of revolution.	secant, cosecant and	equations using the double
a complex conjugate.	algebraic results.	of three vectors and be able		cotangent and their	angle and addition formulae.
Solve quadratic, cubic and	Evaluate and simplify series	to interpret it as a volume.	Key Skills – FP1	relationship to cosine, sine	Differentiate functions using
quartic equations that have	summations for linear,	Plot and sketch a curve	Manipulate inequalities	and tangent.	the chain, product and
complex roots.	quadratic and cubic	expressed parametrically.	involving algebraic fractions.	Simplify expressions, prove	quotient rules.
Show complex numbers on	summations.	Work with the Cartesian	Use graphs to find solutions	simple identities and solve	Differentiate parametric
an Argand diagram.	Derive and use the	equation and parametric	to inequalities.	equations involving secant,	equations.
Find the modulus and	relationships between the	equations of a parabola and a	State the t-formulae	cosecant and cotangent.	Differentiate functions which
argument of a complex	roots of quadratic, cubic and	rectangular hyperbola.	Apply the t-formulae to	Differentiate trigonometric	are defined implicitly.
number.	quartic equations.	Find the equation of tangents	trigonometric identities.	functions – sin x and cos x.	Integrate standard
Be able to write a complex	Evaluate expressions relating	and normal to parabolas and	Use the t-formulae to solve	Differentiate exponentials	mathematical functions
number in modulus-	to the roots of polynomials.	rectangular hyperbolas	trigonometric equations.	and logarithms.	including trigonometric and
argument form.	Find the equation of a	Understand the focus-	Find numerical solutions to		exponential functions and
Represent loci and regions on	polynomial whose roots are a	directrix property of a	first-order differential		use the reverse of the chain
an Argand diagram.	linear transformation of the	parabola.	equations using Euler's		rule to integrate functions of
Understand the concept of a	roots of a given polynomial.	Solve locus problems	method and the midpoint		the form f(ax+b).
matrix and define the zero	Understand the principle of	involving the parabola and	method.		Use trigonometric identities
and identity matrices. Add, subtract and multiply	proof by mathematical induction.	rectangular parabola.	Extend Euler's method to find numerical solutions to		in integration.
					Use the reverse of the chain
matrices.	Prove results about sums of		second-order differential		rule to integrate more
Calculate the determinant of	series, divisibility and		equations.		complex functions.
a matrix.					

Find the inverse of a matrix.	matrices using mathematical		· · · · · · · · · · · · · · · · · · ·		
Use matrices to solve	induction.	Key Skills – FM1	Key Skills – FM1		
systems of equations.	Understand and use the	Calculate the momentum of a	Solve problems involving the		
Interpret simultaneous	vector and Cartesian forms of	particle and the impulse of a	direct impact of two particles		
equations geometrically.	the equation of a straight line	force.	by using the principle of		
Understand the properties of	in three dimensions and of a	Solve problems involving	conservation of momentum		
linear transformations and	plane.	collisions using the principle	and Newton's law of		
represent them using	Calculate the scalar product	of conservation of	restitution.		
matrices.	of two 3D vectors.	momentum.	Apply Newton's law of		
Perform reflections,	Calculate the angle between	Calculate the work done by a	restitution to problems		
rotations, enlargements and	two vectors, two lines, a line	force when its point of	involving the direct collision		
stretches using matrices.	and a plane, or two planes.	application moves.	of a particle with a smooth		
Find the coordinates of	Understand and use the	Calculate the kinetic energy	plane surface.		
invariant points and the	scalar product form of the	of a moving particle and the	Find the change in energy		
equations of invariant lines.	equation of a plane.	potential energy of a particle.	due to an impact or the		
Carry out successive	Determine whether two lines	Use the principle of	application of an impulse.		
transformations using matrix	meet and determine the	conservation of mechanical	Solve problems involving		
products.	point of intersection.	energy and the work-energy	successive direct impacts.		
Understand linear	Calculate the perpendicular	principle.	'		
transformations in three	distance between two lines; a	Calculate the power			
dimensions.	pint and a line, or a point and	developed by an engine.			
Use inverse matrices to	a plane.				
reverse linear					
transformations.					
Assessments:	<u> </u>	<u> </u>	<u> </u>		
At AS students will be assessed	on their ability to				
A01 (60%): Use and apply stand	dard techniques – i.e. be able to (i) select and carry out routine pr	ocedures; (ii) accurately recall fac	cts, terminology and definitions	
A02 (at least 10%): Reason, inte	erpret and communicate mathem	natically – i.e. be able to (i) constr	ruct rigorous mathematical argur	ments (including proofs); (ii) make	e deductions and inferences;
(iii) assess the validity or mathe	ematical arguments; (iv) explain th	neir reasoning; (v) use mathemat	ical language and notation corre	ctly	
A03 (at least 10%): Solve proble	ems within mathematics and in of	ther contexts – i.e. be able to (i) †	translate problems in mathemati	cal and non-mathematical contex	xts into mathematical
processes; (ii) interpret solutior	ns to problems in their original co	ntext, and, where appropriate, e	valuate their accuracy and limita	tions; (iii) translate situations in c	context into mathematical
models; (iv) use mathematical r	models; (v) evaluate the outcome	e of modelling in context. Recogn	ise the limitations of models and	l, where appropriate, explain how	v to refine them.
End of term 1 assessment to co	over:	End of term 2 assessment to co	over:	End of year assessment to cove	r:
All content taught in Autumn 1	will be assessed in November	All content taught in Autumn 1, Autumn 2 and Spring 1 will be		Students who are not continuing with further mathematics in Year 13 will sit the External AS papers.	
		assessed in March			
				Students who are continuing with further mathematics in year	
				13 will sit internal exams consisting of the three AS papers.	
Building understanding:	Building understanding:	Building understanding:	Building understanding:	Building understanding: Rationale / breakdown for your	
Rationale / breakdown for	Rationale / breakdown for	Rationale / breakdown for	Rationale / breakdown for	sequence of lessons:	
your sequence of lessons:	your sequence of lessons:	your sequence of lessons:	your sequence of lessons:	The vast majority of the A2 content for pure further	
The two teachers split so that	These are stand-alone topics	FP1 Vectors follows on from	CP1 volumes of revolution	mathematics cannot be taught until the A2 trigonometry and	
				calculus from the mathematics a level has been taught, therefore as much as possible is covered this term.	
one teaches the matrices content and the other the	which can be taught alongside each other. The	CP1 vectors, introducing some practical applications.	depends on AS integration and extends the idea of		-

		T I (;) (()) ; (
complex numbers. Both	algebra content is taught by	The first half of the topic of	finding areas under curves to	Students need to be fluent in A	
topics provide a good	one teacher and build on	conic sections is covered at	finding volumes created	CP2 and FP1 content, so it is be	
introduction to further maths	students' algebra skills.	AS and is a prerequisite for	when curves are rotated.	this content as possible before	the summer to give time for
and build on GCSE	Vectors is taught by the	the A2 content. The	FP1 t-formulae depends on	consolidation before year 13.	
knowledge.	second teacher and extends	prerequisite for this topic is	AS trigonometry and is an	If all students are continuing into year 13, then we will start this content earlier and cover numerical methods in year 13.	
	the concepts of Cartesian	AS differentiation.			
	equations of lines taught in	FM1 extends AS mechanics	FP1 numerical methods		
	AS mathematics to introduce	skills to include momentum	serves as an introduction to		
	vector equations of lines and	and collisions. Some A2 mechanics content has to be introduced before students can access the topic of work, energy and power.	the topic of differential		
	planes.		equations which features		
			heavily at A2.		
			In FM1, students finish by		
			looking at elastic collisions in		
			1 dimension – this is a		
			perquisite for collisions in 2-		
			dimensions at A2.		
Calendared Centrally Planned	Calendared Centrally Planned	Calendared Centrally Planned	Calendared Centrally Planned	Calendared Centrally Planned	Calendared Centrally Planned
Extended Home – Learning	Extended Home – Learning	Extended Home – Learning	Extended Home – Learning	Extended Home – Learning	Extended Home – Learning
Tasks:	Tasks:	Tasks:	Tasks:	Tasks:	Tasks:
End of chapter assessments	End of chapter assessments	End of chapter assessments	End of chapter assessments	End of chapter assessments	End of chapter assessments
	e the links under enrichment. how to break down long worded ading all parts of the textbook / e	•		elled in the classroom.	
· · · · · · · · · · · · · · · · · · ·	n terms of knowing what a sensib	le answer looks like for any ques	stion they answer and not simply	relying on the calculator.	
Enrichment / opportunities to c	levelop cultural capital (including	careers, WRL and SMSC):			
	<u>hs.org/content/</u> – an online maga arly interview people in maths-ba				f mathematics underlying
Imperial College run an on-line	programme (including mastercla	sses and MOOCs) in the spring a	nd summer term for students in v	year 12 who are considering mat	hematics at university and
	imperial.ac.uk/be-inspired/schoo				,
https://www.admissionstesting	ersity admissions provide enrichm .org/for-test-takers/test-of-math udy-here/undergraduate-study/r	ematics-for-university-admission	n/preparation/ ; whilst the Oxfore		
A padlet of resources for enrich	ment and revision for Feathersto	ne students is kept here <u>https://</u>	/padlet.com/lemerson3/KS5math	<u>15</u>	