Programme of study for Year 10 Science

Autumn (1 st half term)	Autumn (2 nd half term)	Spring (1 st half term)	Spring (2 nd half term)	Summer (1 st half term)	Summer (2 nd half term)
 Topics: B5 Health and Disease P8 Forces in balance C1 Atomic Structure C3 Structure and Bonding 	Topics: B8 Photosynthesis B9 Respiration P9 Motion C5 and C6 Chemical changes/Electro lysis (with conservation of mass recap)	 Topics: B7 Non- communicable diseases P10 Force and motion C9 Crude Oil and Fuels B10 The Nervous System 	 Topics: P7 Radioactivity B11 Hormonal Coordination C7 Energy Changes B15 Adaptations, interdependence, and competition 	 Topics: B16 Organising an ecosystem C8 Rates of and equilibrium 	 Topics: B17 Biodiversity and ecosystems P11 Waves Time dependent – P12 Electromagneti c spectrum

Skills (students should be able to do):

AO1: Demonstrate knowledge and understanding of: scientific ideas; scientific techniques and procedures.

AO2: Apply knowledge and understanding of: scientific ideas; scientific enquiry, techniques and procedures.

AO3: Analyse information and ideas to: interpret and evaluate; make judgments and draw conclusions; develop and improve experimental procedures

Key learning	Key learning outcomes	Key learning outcomes	Key learning outcomes	Key learning outcomes	Key learning outcomes
outcomes	(Students should	(Students should know):	(Students should know):	(Students should	(Students should
(Students should	know):	Non-communicable	Radioactivity:	know):	know):
know):	Photosynthesis:	diseases:	- Understand the concept	Organising an	Biodiversity and
Health and	- Understand the	- Understand the causes	of radioactivity and the	ecosystem:	ecosystems:
disease:	process of	and risk factors of non-	different types of	- Understand how	- Understand the
- Understand the	photosynthesis,	communicable diseases	radiation	ecosystems are	importance of
definition and	including the reactants	- Describe the impact of	- Describe the uses and	structured and the	biodiversity for
impact of health	and products involved	non-communicable	applications of	different components	ecosystem stability and
and disease on	- Explain the role of	diseases on individuals and	radioisotopes	within ecosystems	resilience
individuals and	chlorophyll in capturing	societies	- Explain the risks and	- Describe the	- Describe the factors
society.	light energy	- Explain the methods of	safety precautions	processes of energy	that threaten
- Learn about the	- Describe the factors	prevention and treatment	associated with	transfer and nutrient	biodiversity
causes,	that affect the rate of	for non-communicable	radioactivity	cycling in ecosystems	- Explain the methods
transmission, and	photosynthesis	diseases		- Explain the concept of	used to conserve and
transmission, and	photosynthesis	diseases		- Explain the concept of	used to conserve and

provention of			Hormonal Coordination:	succession and the	protoct biodiversity
prevention of	Dessivation	Fores and motion.			protect biodiversity
infectious	Respiration:	Force and motion:	- Understand the role of	changes that occur in	
diseases.	- Understand the	- Understand the	hormones in maintaining	ecosystems over time	Waves:
- Explore the	process of respiration	relationship between	homeostasis		- Understand the
principles and	and the reactants and	force, mass, and	- Describe the endocrine	Rates and equilibrium:	characteristics of
benefits of	products involved	acceleration	glands and their functions	- Understand the	waves, including
vaccination.	- Explain the difference	- Describe the different	- Explain the feedback	factors affecting	amplitude, frequency,
 Understand the 	between aerobic and	types of forces, such as	mechanisms involved in	reaction rates	and wavelength
importance of a	anaerobic respiration	gravitational, frictional,	hormonal regulation	- Describe how reaction	- Describe the
balanced diet and	- Describe the	and magnetic		rates can be altered	properties of different
the consequences	importance of	- Explain how forces can	Energy Changes:	- Explain the concept of	types of waves, such as
of malnutrition.	respiration in releasing	change the motion of	- Understand the	dynamic equilibrium in	sound and
- Learn about the	energy	objects	different forms of energy	chemical reactions	electromagnetic waves
effects of lifestyle			and how they can be		- Explain how waves
choices, such as	Motion:	Crude oil and fuels:	converted from one form		can be reflected,
smoking and	- Understand the	- Understand the structure	to another		refracted, and
substance abuse,	concept of motion and	and properties of organic	- Explain the concept of		diffracted
on health.	how it can be	compounds	energy efficiency		
- Explore the	measured	- Describe the process of	- Describe the factors		Electromagnetic
importance of	- Describe the factors	fractional distillation to	influencing energy		spectrum:
exercise and the	affecting motion, such	produce smaller mixtures	transfer in systems		- Understand the
impact of physical	as force, mass, and	of alkanes, and how this			different types of
activity on health	acceleration	can be used to create	Adaptations,		electromagnetic
and well-being.	- Explain the	other important products	interdependence, and		radiation and their
- Understand the	relationship between	- Explain the importance of	competition:		uses
principles of first	distance, time, and	organic compounds in	- Understand the concept		- Describe the
aid and the role of	speed	everyday life	of adaptation and how		properties and effects
healthcare	-1		organisms adapt to their		of different parts of the
professionals in	Chemical Changes:	The Nervous System:	environments		electromagnetic
promoting and	- Explain the difference	- Understand the structure	- Describe the		spectrum
maintaining good	between physical and	and functions of the	interdependence of		- Explain the principles
health.	chemical changes	nervous system, including	organisms in ecosystems		of wave-particle duality
	- Describe the factors	neurons and synapses	- Explain the concept of		
Forces in balance:	influencing the rate of	- Describe the pathway of	competition and its role		
- Learn about	chemical reactions	nerve impulses	in natural selection		
different types of	- Understand the	- Explain the role of the			
forces such as	concept of	nervous system in			
	concept of	nervous system m			

gravitational,	conservation of mass in	coordinating responses		
electromagnetic,	chemical reactions	and maintaining		
and nuclear		homeostasis		
forces.	Electrolysis:			
- Understand the	- Understand the			
concept of forces	process of electrolysis			
in balance,	and the role of ions			
including	- Describe the products			
equilibrium	of electrolysis			
conditions and	- Explain the factors			
resultant forces.	affecting the rate of			
- Explore the	electrolysis			
effects of forces				
on motion, such				
as acceleration,				
deceleration, and				
changes in				
direction.				
- Learn about the				
factors affecting				
the speed and				
direction of				
moving objects.				
- Investigate the				
relationship				
between forces,				
mass, and				
acceleration using				
Newton's laws.				
- Understand the				
principles of				
moments and				
their applications,				
including simple				
levers and				
balancing objects.				
- Explore the				

principles of			
pressure and the			
ways it can be			
applied and			
measured.			
Atomic structure:			
 Understand the 			
historical			
development of			
atomic theory and			
the contributions			
of different			
scientists.			
- Learn about the			
structure of			
atoms, including			
subatomic			
particles and the			
arrangement of			
electrons within			
energy levels and			
orbitals.			
 Understand the 			
different models			
of atomic			
structure,			
including the Bohr			
model and the			
quantum			
mechanical			
model.			
- Learn about			
isotopes and their			
uses in medicine,			
industry, and			
research.			

	1		
- Explore the			
composition and			
properties of			
elements and			
compounds.			
- Understand the			
concept of nuclear			
radiation and its			
applications and			
risks.			
 Investigate the 			
principles of			
radioactive decay			
and the concept			
of half-life.			
Structure and			
bonding:			
- Explore different			
types of chemical			
bonds, including			
ionic, covalent,			
and metallic			
bonds.			
- Understand the			
relationship			
between the			
structure and			
properties of			
substances.			
- Learn about the			
importance of			
chemical bonding			
in determining the			
physical and			
chemical			
properties of			

materials.					
- Investigate the					
concept of					
electrostatic					
forces and their					
role in bonding.					
- Understand the					
periodic table and					
the patterns and					
trends in chemical					
properties of					
elements.					
- Explore the					
principles of					
chemical					
reactions,					
including the law					
of conservation of					
mass and					
balancing					
equations.					
 Investigate the 					
role of catalysts in					
chemical reactions					
and the factors					
affecting reaction					
rates.					
ssessments: 2 linear asses	ssments, 4 other assess	ed pieces of work which ma	y be carried out in class or as l	home learning	
		ar your conyonco of lossons			

Building understanding: Rationale / breakdown for your sequence of lessons:

The rotational basis of teaching biology, chemistry, and physics allows for distributed practice, which has been shown to enhance long-term retention and understanding of scientific concepts. By alternating between the three sciences, students can revisit and review previously learned topics, reinforcing their knowledge and building connections between different areas of science.

The sequencing of topics is designed to create cohesion between the three sciences, but also build the understanding of each discrete science. For example,

the topic "Health and Disease" in biology can be linked to chemistry through the understanding of chemical reactions that occur within the body and the study of organic compounds involved in physiological processes. Similarly, the topic "Photosynthesis" in biology is closely related to the topic "Energy changes" in chemistry, as it involves the conversion of light energy into chemical energy. However, we begin with the topics of Health and Disease in Biology as students will have a deep understanding of cells and their processes from KS3, and this will allow them to make connections about how specialised cells are used to fight disease.

In biology, the initial topics of "Health and Disease" and "Photosynthesis" lay the foundation for understanding the fundamental processes that occur within living organisms. These topics provide students with an understanding of the interactions between molecules, cells, and organ systems, as well as the importance of energy transfer in biological systems.

The subsequent topics of "Respiration" and "Non-communicable diseases" delve deeper into the processes of energy production and the impact of genetic and environmental factors on health. These topics highlight the relevance of chemistry and physics in understanding biological phenomena, such as the chemical reactions involved in cellular respiration and the physical forces at play in the development of diseases.

Moving on to "Hormonal coordination" and "Adaptations, interdependence and competition," students explore the role of hormones in regulating bodily functions and the evolutionary mechanisms that shape the relationships between organisms. These topics provide opportunities to integrate concepts from chemistry and physics, such as the chemical signals involved in hormonal coordination and the physical forces involved in competition for resources.

The final topics in biology, "Organizing an ecosystem" and "Biodiversity and ecosystems," emphasize the interconnectedness of living organisms in their environment. These topics allow students to apply their knowledge of biology, chemistry, and physics to understand the complex interactions within ecosystems, the impact of human activities on biodiversity, and the need for sustainable practices.

In chemistry, the sequencing of topics starts with "Atomic structure" and "Bonding," which lay the foundation for understanding the structure and properties of matter. These topics provide the necessary knowledge for further exploration of chemical reactions, energy changes, and rates of reaction. This also builds on students' understanding of atoms, molecules and compounds, as well as the periodic table, from KS3.

The topic "Chemical changes" focuses on the reactions that occur when different substances interact, including the study of acids and bases. This topic enables students to understand the transformation of matter and the role of chemistry in everyday life.

Moving on to "Organic chemistry," students explore the properties and reactions of carbon-based compounds, which are fundamental to the study of biology and biochemistry. This topic allows students to connect chemistry with biological concepts, such as the structure and function of biomolecules.

The topic "Energy changes" delves into the thermodynamics of reactions, providing students with an understanding of energy transfer and conservation. This topic has direct links to topics in biology, such as photosynthesis and cellular respiration, as both processes involve energy transformations.

The final topic in chemistry, "Rates of and equilibria," explores the factors that influence the speed at which chemical reactions occur. This topic provides students with a deeper understanding of reaction rates and allows for connections with physics concepts, such as the role of catalysts and the collision theory.

In physics, the topic sequence begins with "Forces in balance," which introduces students to the concept of forces and their equilibrium. This topic lays the foundation for understanding the principles of motion and force that follow. This builds on their knowledge from KS3 on the big idea of forces.

The subsequent topic, "Motion," allows students to explore the kinematics of objects, including the study of velocity, acceleration, and forces acting on moving objects. This topic provides a solid understanding of the fundamental concepts of physics.

Moving on to "Force and motion," students delve into Newton's laws of motion and the relationships between forces, mass, and acceleration. This topic allows students to apply their understanding of forces and motion to real-world scenarios.

The topic "Radioactivity" introduces students to the concept of nuclear physics, including the properties and behaviour of radioactive materials. This topic connects with chemistry through the study of nuclear reactions and their applications, such as in medicine and energy production.

The final topic in physics, "Waves" and "The electromagnetic spectrum," explores the behaviour and properties of waves, including light and sound waves. This topic allows students to make connections between physics and other disciplines, such as optics in biology and the use of electromagnetic waves in communication technology.

If time allows, the inclusion of "The electromagnetic spectrum" provides students with a broader understanding of the various types of electromagnetic waves and their applications in different areas of science and technology.

Overall, this topic sequence and the rotational basis of teaching biology, chemistry, and physics are designed to provide a comprehensive and cohesive science education. By linking concepts across the three sciences and allowing for distributed practice, students can develop a deeper understanding of scientific principles, make connections between different areas of science, and apply their knowledge to real-world contexts.

Home – Learning:

Teachers will set home learning using lesson materials. Some of these will be assessed. This will be indicated.

Reading / literacy:

Students are encouraged to prior reading on topics. In lessons students are taught how to construct answers through use of writing frames and exemplar answers where extended writing is required and command words and keywords that are relevant to the topic are consistently assessed in lessons through questioning and written question practice.

Numeracy:

- Recognise and use expressions in decimal form: Recognise and use expressions in standard form; Use ratios, fractions and percentages; Make estimates of the results of simple calculations
- Handling data: Use an appropriate number of significant figures; Find arithmetic means; Construct and interpret frequency tables and diagrams, bar charts and histograms; Make order of magnitude calculations

- Algebra: Understand and use the symbols: =, <>, >, ∝, ~ ;Change the subject of an equation; Substitute numerical values into algebraic equations using appropriate units for physical quantities
- Graphs: Translate information between graphical and numeric form; Understand that y = mx + c represents a linear relationship; Plot two variables from experimental or other data; Determine the slope and intercept of a linear graph; Draw and use the slope of a tangent to a curve as a measure of rate of change
- Geometry and trigonometry: Visualise and represent 2D and 3D forms including two dimensional representations of 3D objects; Calculate areas of triangles and rectangles, surface areas and volumes of cubes

Enrichment / opportunities to develop cultural capital (including careers, WRL and SMSC):

- Trips during science week
- Science week
- Science club
- STEM club