Autumn (1 st term)	Autumn (2 nd term)	Spring (1 st term)	Spring (2 nd Term)	Summer (1 st term)	Summer (2 nd term)
Other timescale:	Other timescale:	Other timescale:	Other timescale:	Other timescale:	Other timescale:
Topic: Chemistry: Particle model and separating mixtures Biology: Cells	Topic: <i>Physics:</i> Forces 1 <i>Chemistry:</i> Acids and Alkalis	Topic: <i>Physics:</i> Forces 2 <i>Biology:</i> Reproduction and variation	Topic: <i>Physics:</i> Light and Sound <i>Biology:</i> Reproduction and variation	Topic: <i>Chemistry:</i> Metals and non-metals <i>Biology:</i> Interdependence	Topic: <i>Chemistry:</i> Earth Structure <i>Chemistry:</i> Universe
<u>Chille/students should be</u>	abla ta da):				

Skills(students should be able to do):

AO1:

Demonstrate knowledge and understanding of: Scientific ideas, techniques and procedures through

-Remembering key facts of any area within Science.

-Using appropriate terminology in answers (key words and phrases).

-Explaining the relationships between scientific advances, their ethical implications and the benefits and risks associated with them.

AO2:

Apply knowledge and understanding of: Scientific ideas, enquiry, techniques and procedures through

-Applying knowledge effectively in a wide range of contexts.

-Using theories to make explanations of events.

-Using data to support evidence.

-Rearranging equations in calculations.

AO3:

Analyse information and ideas to: Interpret and evaluate; make judgements and draw conclusions; develop and improve experimental procedures through -Evaluating information from a wide range of sources systematically to develop arguments and explanations.

-Drawing detailed, evidence-based conclusions.

-Spotting causes of error and uncertainty in data or experimental procedures.

-Identifying the unit and/or symbol of different quantities.

-The correct use of punctuation, spelling of key words, capital letters, sentences and paragraphs.

Key Learning Outcomes Key Learning Outcome	Key Learning Outcomes	Key Learning Outcomes	Key Learning	Key Learning Outcomes
(students should know): (students should know	: (students should know):	(students should know):	Outcomes	(students should know):
			(students should	
Chemistry: Particle Physics: Forces 1	Physics: Forces 2	Physics: Light and Sound	know):	
model and separating •Describe what forces do	• Explain the difference	•Describe what happens		
mixtures State the unit of force	between contact and non-	when a light ray meets a		Chemistry: Earth
Describe what the Describe what is meant	contact forces	different medium		Structure
particle model of matter is by an interaction pair	•Describe what happens	•State the speed of light	Chemistry: Metals	 Name the three rock
• Explain the properties of •Describe what happens	to a moving object when	•Draw ray diagrams	and non-metals	layers of the Earth
different materials based when the resultant force	the resulting force acting	•Use ray diagrams of	 Name three 	•Compare the layers of
on the arrangement and on an object is not zero	on it is zero	eclipses to describe what	magnetic elements	the Earth
movement of their •Use a force diagram to	•Describe the factors that	is seen by observers in	 Name the only 	•Describe how
particles. describe situations	affect the size of the drag	different places.	metal and non-	sedimentary rocks are
Describe the properties involving gravity that are	forces and friction, and	•Describe how light is	metal that are	formed
of solids, liquids and gases in equilibrium	how friction and drag can	reflected from a mirror	liquid at room	•Explain why a
using the particle model •State and use the	be reduced.	•Describe how images are	temperature	sedimentary rock has a
Explain the properties of Tormula for speed	•Describe hoe forces	formed in a plane mirror	 Identify an 	particular property
based on the arrangement between speed and	deform objects	•Use ray diagrams to	unknown element	based on how it was
and movement of their iourney time	•Explain how solid	show how light reflects	from its physical	formed
narticles	surfaces provide a support	and forms images	and chemical	•Describe how igneous
Describe simply how of an object depends on	force	•Describe what happens	properties	and metamorphic rocks
changes of temperature or the movement of the	•Use Hooke's Law	when light enters a	 Name the 	are formed
state can be described in observer	•Explain what 'linear	medium	substances formed	•Explain why igneous
terms of particles •State what a straight lin	e relationship' means	•Use a ray-diagram model	when metals and	and metamorphic rocks
transferring energy or a curved line on a	•Describe what is meant	to describe how light	non-metals react	have particular
• Recognise the state of a distance-time graph tells	by a moment	passes through lenses and	with oxygen	properties based on
substance in relation to its you about speed	•Calculate the moment of	transparent materials	 Classify the 	how they were formed
melting and boiling point. •Calculate speed from a	a force	•Construct a ray diagram	substances formed	•Construct a labelled
-Describe one difference distance-time graph	•Describe how fluids exert	to show how light refracts.	when metals and	diagram to explain the
between boiling and Illustrate a journey with	a pressure in all directions	•Name parts of the eve	non-metals react	process of rock
evaporation changing speed on a	•Calculate fluid pressure	•Use ray diagrams to	with oxygen	formation
• Use the particle model distance-time graph, and	•Describe how	describe how light passes	•Describe an	•Describe the
to explain diffusion label changes in motion	atmospheric pressure	through the lens in your	oxidation reaction	properties of ceramics
Draw before and after State the value of gravit	changes with height	eve	with a word	•Fxplain why a
explain observations	•State how liquid pressure	•Describe how lenses may	equation and a	substance has a
•Describe the difference	state non nyulu pressure	2 coorde now remote may		substance has a

			a		
• Explain observations	•Describe how	•Explain why some things	•State the difference	•State what is	based on how it was
about gas pressure in	gravitational force varies	float and some things sink,	between different colours	formed when	formed
terms of particles	with mass and distance	and how area affects	in terms of frequency	metals react with	
 Describe what an atom 	 Use the formula to 	upthrust	 Use the ray model to 	acids	<i>Chemistry:</i> Universe
is	calculate your weight on	 Calculate pressure in 	describe how objects	 Compare the 	•Describe objects that
 Describe some 	different planets and	liquids in a range of	appear different colours	reactions of	you can see in the night
differences between	 Explain changes in 	situations	and how light is refracted	different metals	sky
elements and compounds	weight	•Expalin how hydraulic	through a prism	with dilute acids	•Describe the structure
 Use diagrams to 	Explain why objects stay in	machines work	•Explain observations	•Describe a metal-	of the Universe
represent atoms and	orbit	•State what is meant by	where coloured lights are	acid reaction with a	•Describe the model of
molecules of elements		stress	mixed or objects are	word equation and	the solar system
and compounds	Chemistry: Acids and	• Explain the effect of solid	viewed in different lights	a particle diagram	•Explain why we see
 State what a mixture is 	Alkalis	•Explain the effect of solid	• State the speed of sound	a particle ulagraffi	• Explain why we see
 State why it is possible 	•Describe the	surfaces on each other	•State the speed of sound	•Name the	objects in the solar
to separate mixtures	characteristics of	using ideas about stress	and what it can and	substances formed	system, and why they
 State why filtration 	chemical reactions		cannot travel through	when metals react	appear to move as they
works to separate a	•Explain why chemical	Biology: Reproduction	•Describe how sound is	with oxygen	do
particular mixture	reactions are useful	 Identify the changes that 	produced and travels	 Compare the 	•Explain why places on
 State why evaporation 	•Compare chemical	take place during puberty	 Explain observations 	reactions of	the Earth experience
works to separate a	reactions to physical	 State the difference 	where sound is	different metals	different daylight hours
particular mixture	changes	between adolescence and	transmitted	with oxygen	and seasons
 State why distillation 	•Recall the hazards of	puberty	 Describe the link 	 Describe the 	 Name some phases of
works to separate a	acids and alkalis and	 Describe the main 	between amplitude and	oxidation reaction	the moon
particular mixture	how to handle them	changes that take place	loudness	with a word	 Describe the
 Choose the most 	safely	during puberty	 Explain observations 	equation and a	appearance of the
suitable technique to	•Describe the	 Name the main 	where sound is reflected	particle diagram	Moon and planets from
separate a mixture of	differences between	structures in the male and	or absorbed by different	 State what the 	diagrams
substances	concontrated and dilute	female reproductive	media	reactivity series is	•Explain why you see
Describe now	collections of an acid	systems, including	•Describe the amplitude	and what it shows	phases of the Moon
	•Compare the	gametes	of a wave from a diagram	 Place an 	
separates substances		•Describe the function of	or oscilloscope picture	unfamiliar metal	
Use evidence from	properties of acids and	the main structures in the	•Use drawings of waves to	into the reactivity	
identify unknown		male and female	describe how sound	series based on	
substances in mixtures	•Identify acids, alkalis	reproductive systems	wayes change with	information about	
שטאנמוונכא ווו ווווגנעופא	and neutral solutions on	•Describe the structure	volume	its reactions with	
Biology: Colle	the pH scale	and function of gametes	•Describe the link	water	
Describe what a call is	 Identify the best 	•State what is meant by	botwoon froquency and		
	indicator to distinguish	fortilisation	wavelength	ovidation	
		ICIUIISAUUII	wavelength	UXIUdlIUII	

• Explain how to use a	between solutions of	•Describe the process of	•Describe the frequency	displacement, or	
microscope to observe a	different pH	fertilisation	of a wave from a diagram	metal-acid reaction	
cell	 Use data and 	•Describe causes of low	or oscilloscope picture	with a word	
Use a microscope to	observations to	fertility in male and	•Use drawings of waves to	equation	
observe a prepared	determine the pH of a	female reproductive	describe how sound	 Place an 	
slide and state the	solution	systems	waves change with pitch	unfamiliar metal	
magnification	 Describe what factors 	 State what is meant by 	•Name some parts of the	into the reactivity	
Identify and compare	affect the pH of a	gestation	ear	series based on	
the similarities and	solution	 Describe what happens 	•Describe how the ear	information about	
differences between	 Name three strong 	during gestation and birth	works	its reactions	
plant and animal cells	acids and two weak	 Explain whether 	 Describe how your 		
• Describe the functions	acids	substances are passed	hearing can be damaged	Biology:	
of the components of a	 Use data and 	between the mother and		Interdependence	
cell	observations to	the fetus		 Describe what 	
• Prepare and observe	determine the pH of a	•State what the menstrual		food chains and	
cells on a microscope	solution and explain	cycle is		food webs show	
slide safely	what this shows	 State the length of the 		 Combine food 	
 Describe examples of 	 State what products 	menstrual cycle		chains to form a	
specialised animal and	are formed in the	•Describe the main stages		food web	
plant cells	reaction between an	of the menstrual cycle		 State factors that 	
 Suggest what kind of 	acid and alkali	 State the causes of 		affect the	
tissue or organism a cell	 Explain how 	variation in species		population of a	
is part of, based on its	neutralisation reactions	 Explain whether 		species	
features	are used in different	characteristics are		 Explain how toxic 	
 Describe structural 	situations	inherited or		materials can	
adaptations of plant and	 Describe a method for 	environmental		accumulate in a	
animal cells,	making a neutral	•Describe the difference		food web and the	
summarising this in a	solution from an acid	between continuous and		effect on different	
table or as a model	and an alkali	discontinuous variation		populations	
	 State what products 	 Represent variation 		 Explain the 	
	are formed in the	within a species using		importance of	
	reaction between an	graphs		insect pollinators to	
	acid and a base	 Name the main parts in 		food supplies	
	 Choose the salts that 	the skeleton		 State what is 	
	form when acids react	•List the functions of the		meant by	
	with metals or bases	skeleton		ecosystem,	
				community,	

	•Explain how the property of	habitat,	
	bones link to their function	environment, and	
	In the body	niche	
	•State where joints are	Describe how	
	found in the body	different organisms	
	•Describe the structure	co-exist within an	
	and function of joints	ecosystem	
	•Explain how to measure	•List some	
	the force exerted by	resources that	
	different muscles	plants, and animals	
	Describe the function of	compete for	
	major muscle groups and	•Describe the	
	explain how antagonistic	interaction	
	muscles cause movement	between predator	
		and prey	
		populations	
		•Describe how	
		variation helps	
		species to survive	
		environmental	
		changes	
		•Explain how	
		species are adapted	
		to their	
		environments	
		•Explain how	
		organisms adapt to	
		environmental	
		changes	
End of term 1 assessment to cover:	End of term 2 assessment to cover:	End of year assessment to cover:	
Linear Progress Exam 1	Linear Proaress Exam 2	Linear End of Year Exam	
Chemistry: Particle model and Separating mixtures	Chemistry: Particle model, Separating mixtures, Acid	s Chemistry: Particle model. Separating	
Biology: Cells	and Alkalis. Metals and non-metals	mixtures, Acids and Alkalis, Metals and non-	
Physics: Forces 1 (Speed and gravity)	Biology: Cells Reproduction and Interdependence	metals and Farth's structure	

Physics: Forces 1 (Speed and gravity) and Forces 2	Biology: Cells, Reproduction and
(Contact, non-contact forces and pressure)	Interdependence
	Physics: Forces 1 (Speed and gravity) and
	Forces 2 (Contact, non-contact forces and
	pressure), Electromagnets 1 and Energy

Building understanding: Rationale / breakdown for your sequence of lessons:

During KS2 pupils have been introduced to solids, liquids and gases focussing on the differences between water (liquid) and sand (solid). They are also able to understand that gases are all around us. They are introduced to the idea that states can change between each other and are introduced to the terms evaporation and condensation. In year 7, knowledge is built on this by introducing the term 'particles'. Pupils will look at how particles are arranged differently within these 3 states of matter and how this affects their properties. Pupils will also be introduced to the terms melting, freezing, boiling and sublimation to explain how these states can interchange between each other. Elements, compounds and mixtures will be introduced which in turn will lead to methods of separating mixtures. Part of these mixtures that are introduced may be classified as acids, alkalis or neutral leading to the introduction of this topic in term 2. Students will familiarise themselves with the pH scale and how this can help in identifying a type of substance as either acid, alkali or neutral. As students will have been introduced to atoms when discussing elements, pupils will then move onto identifying metals and non-metals based on position in periodic table and through an investigative task on their properties. Some of these metals are found in their native state i.e. gold whist some may be found as ores. As these substances can be found on Earth naturally, this leads onto the next topic of The Earth's structure.

During KS2 pupils are introduced to the human body and that the human body is made up of cells. Pupils will have an idea that there is a part within the body that contains genetic information and are introduced to the term DNA. At KS3 we expand on this with our first topic of Cells. Students will have also been provided with summer homework focussing on the history of how cells were discovered so that they start secondary school Science with enhanced background knowledge. Pupils will be looking at different parts of animal and plant cells and explaining the function and differences of each part and specialised cells including their adaptations. This leads onto Reproduction next term will links into the specialised cells of sperm and egg cells. As reproduction is a process all living organisms do we lead onto the next topic of interdependence. At KS2 pupils will have been introduced to the classification system and are aware of the terms invertebrate and vertebrate. They will have been shown a food chain and taught how to interpret them and at KS3 pupils will taught how to construct their own Food chains, Food webs and how any disruption will affect these chains.

At KS3 we start with the topic of Forces as this is a fundamental part of the course, introducing pupils to contact and non-contact forces. These topics will also build on pupils investigative skills as pupils are minimally exposed to this at KS2. We then move onto Electromagnets which pupils will have come across at KS2. Pupils will have been introduced to the basic components within circuits and can construct and draw simple series circuit diagrams. At KS3, this is built on by introducing pupils to parallel circuits, ammeters and voltmeters. This in turn allows pupils to measure current and voltage within series and parallel circuits which allows for pupils to further developing investigative skills by making observations and comparisons of these two types of circuits. We then move onto Energy which links on from circuits where pupils will have been introduced to chemical energy stored in batteries. At KS3 we introduce pupils to different forms of energy and also investigate how energy can be released from food. Pupils will not have come across this at KS2. We conclude with Light, Sound and the Universe. At KS2 pupils will have been introduced to light travelling in straight lines and to the term reflection. They will have created models for the solar system and understand that the Earth moves on its axis. We build on this by investigating reflection, refraction and phases of the moon.

Home – Learning:
Centralised home learning tasks to support student understanding for each topic.
Reading / literacy:
Students are provided with links to resources to encourage prior reading on topics. In lessons students are taught how to construct answers through use of writing frames and exemplar answers where extended writing is required and command words and keywords that are relevant to the topic are consistently assessed in lessons through questioning and exam practice. Spelling tests are conducted on key scientific terms. Example of how to use these scientific terms also taught. Assessed tasks are included within topics where students are expected to write an extended piece of work.
Numeracy:
Physics: Reading Ammeters, voltmeters Calculating current Manipulation of speed equation triangle Understanding units Conversion of units
Chemistry: Atomic number and mass number of elements Proton, electron and neutron number of elements and compounds pH Scale Understanding units Conversion of units
Biology: Total magnification calculation
 Enrichment / opportunities to develop cultural capital (including careers, WRL and SMSC): Science club Crest club Trip to Science museum Trip to National History museum Science week outside speakers