Programme of study for Year 12 A level Biology

Autumn (1 st term)	Autumn (2 nd term)	Spring (1 st term)	Spring (2 nd Term)	Summer (1 st term)	Summer (2 nd term)
Other timescale:	Other timescale:	Other timescale:	Other timescale:	Other timescale:	Other timescale:
From: To:	From: To:	From: To:	From: To:	From: To:	From: To:
Topic / Big Question:	Topic / Big Question:	Topic / Big Question:	Topic / Big Question:	Topic / Big Question:	Topic / Big Question:
Teacher 1: Introduction	Teacher 1: 3.1 Biological	Teacher 1: 3.4 Genetic	Teacher 1: 3.3	Teacher 1: 3.3	Teacher 1: 3.3
to Statistics at A level	molecules Part 2	information and	Organisms exchange	Organisms exchange	Organisms exchange
Biology, 3.1 Biological		Variation and	substances with their	substances with their	substances with their
molecules part 1	Teacher 2: 3.2 Cells:	relationships between	environment: Gas	environment: Digestion	environment: Mass
Teacher 2: Introduction	Transport across cell	organisms: Genetic	Exchange	and absorption	transport
to Maths at A level	membranes and Cell	information	Organisms exchange	Teacher 2: 3.4 Genetic	Teacher 2: 3.4 Genetic
Biology, 3.2: Cells: Cell	recognition and the	3.3 Organisms exchange	substances with their	information and	information and
Structure and Studying	immune system	substances with their	environment: Digestion	Variation and	Variation and
cells		environment: Gas	and absorption	relationships between	relationships between
3.2 Cells: All cells arise	Skills (students should	Exchange	Teacher 2: 3.4 Genetic	organisms: Species and	organisms: Biodiversity
from other cells	be able to do):		information and	Taxonomy	
	AO1: Demonstrate	Teacher 2: 3.2 Cells: Cell	Variation and		Skills (students should
Skills (students should	knowledge and	recognition and the	relationships between	Skills (students should	be able to do):
be able to do):	understanding of	immune system	organisms: Variation	be able to do):	AO1: Demonstrate
AO1: Demonstrate	scientific ideas,	Teacher 2: 3.4 Genetic	and relationships	AO1: Demonstrate	knowledge and
knowledge and	processes, techniques	information and	between organisms	knowledge and	understanding of
understanding of	and	Variation and	Skills (students should	understanding of	scientific ideas,
scientific ideas,	procedures	relationships between	be able to do):	scientific ideas,	processes, techniques
processes, techniques	 AO2: Apply knowledge 	organisms: Variation		processes, techniques	and
and	and understanding of	and relationships	AO1: Demonstrate	and	procedures
procedures	scientific ideas,	between organisms	knowledge and	procedures	AO2: Apply knowledge
• AO2: Apply knowledge	processes, techniques		understanding of	• AO2: Apply knowledge	and understanding of
and understanding of	and procedures:	Skills (students should	scientific ideas,	and understanding of	scientific ideas,
scientific ideas,	 in a theoretical 	be able to do):	processes, techniques	scientific ideas,	processes, techniques
processes, techniques	context	AO1: Demonstrate	and	processes, techniques	and procedures:
and procedures:	 in a practical context 	knowledge and	procedures	and procedures:	 in a theoretical
 in a theoretical 	 when handling 	understanding of	AO2: Apply knowledge	 in a theoretical 	context
context	qualitative data	scientific ideas,	and understanding of	context	 in a practical context
 in a practical context 	 when handling 	processes, techniques	scientific ideas,	 in a practical context 	 when handling
 when handling 	quantitative data	and	processes, techniques	 when handling 	qualitative data
qualitative data		procedures	and procedures:	qualitative data	

 when handling 	• AO3: Analyse,	• AO2: Apply knowledge	• in a theoretical	 when handling 	 when handling
quantitative data	interpret and evaluate	and understanding of	context	quantitative data	quantitative data
• AO3: Analyse,	scientific information,	scientific ideas,	 in a practical context 	• AO3: Analyse,	• AO3: Analyse,
interpret and evaluate	ideas and evidence,	processes, techniques	 when handling 	interpret and evaluate	interpret and evaluate
scientific information,	including in relation	and procedures:	qualitative data	scientific information,	scientific information,
ideas and evidence,	to issues, to:	 in a theoretical 	 when handling 	ideas and evidence,	ideas and evidence,
including in relation	 make judgements and 	context	quantitative data	including in relation	including in relation
to issues, to:	reach conclusions	 in a practical context 	• AO3: Analyse,	to issues, to:	to issues, to:
 make judgements and 	 develop and refine 	 when handling 	interpret and evaluate	 make judgements and 	 make judgements and
reach conclusions	practical design and	qualitative data	scientific information,	reach conclusions	reach conclusions
 develop and refine 	procedures.	 when handling 	ideas and evidence,	 develop and refine 	 develop and refine
practical design and		quantitative data	including in relation	practical design and	practical design and
procedures.		• AO3: Analyse,	to issues, to:	procedures.	procedures.
•		interpret and evaluate	 make judgements and 		•
		scientific information,	reach conclusions		
		ideas and evidence,	 develop and refine 		
		including in relation	practical design and		
		to issues, to:	procedures.		
		 make judgements and 	•		
		reach conclusions			
		 develop and refine 			
		practical design and			
		procedures.			
Key Learning Outcomes	Key Learning Outcomes	Key Learning Outcomes	Key Learning Outcomes	Key Learning Outcomes	Key Learning Outcomes
(students should know):	(students should know):	(students should know):	(students should know):	(students should know):	(students should know):
Teacher 1:	Teacher 1:	Teacher 1:	Teacher 1:	Teacher 1:	Teacher 1:
Introduction to	3.1 Biological	3.4 Genetic	3.3 Organisms	3.3 Organisms	3.3 Organisms
statistics at A level	molecules:	information, variation	exchange substances	exchange substances	exchange substances
Biology	3.1.5 Nucleic acids are	and relationships	with their environment:	with their environment	with their environment
Chi-squared test,	important information-	between organisms	3.3.3 Digestion and	3.3.3 Digestion and	3.3.4 Mass transport
Student's T-test	carrying molecules	3.4.2 DNA and protein	absorption	absorption	5. Dissection of animal or
Correlation coefficient,	(structures and functions) The semi-conservative	synthesis (processes)	During digestion, large	Mechanisms for the	plant respiratory system
Standard deviation	replication of DNA	2.2.0	biological molecules are hydrolysed to smaller	absorption of the products of digestion by cells lining	or mass transport system
3.1 Biological	(purpose and process)	3.3 Organisms	molecules that can be	the ileum of mammals, to	or of organ within such a system.
molecules:	Evaluate the work of	exchange substances	absorbed across cell	include	3.3.4.2 Mass transport in
	scientists in validating the	with their environment	membranes.	3.3.4 Mass transport	plants
	8		Digestion in mammals of:		1

	Matana Cristana dalar		and the standard set of the	Quer la rea distance	Walana as the stress of the st
3.1.1 Monomers and	Watson–Crick model of	3.3.1 Surface area to	-carbohydrates by	Over large distances,	Xylem as the tissue that
polymers (structures,	DNA replication	volume ratio	amylases and membrane-	efficient movement of	transports water in the
functions and properties)	3.1.6 ATP Structure,	3.3.2 Gas exchange	bound disaccharidases	substance to and from	stem and leaves of plants.
3.1.2 Carbohydrates	function and formation		- lipids by lipase, including	exchange surfaces is	The cohesion-tension
(structures, functions and	during photosynthesis, or		the action of bile salts	provided by mass	theory of water transport
properties)	during respiration	Teacher 2:	- proteins by	transport	in the xylem.
Biochemical tests using	3.1.7 Water;		endopeptidases,	3.3.4.1 Mass transport in	Phloem as the tissue that
Benedict's solution for	importance, properties,	3.2 Cells	exopeptidases and	animals	transports organic
reducing sugars and non-	functions	3. Production of a dilution	membrane-bound	Structure and functions of	substances in plants. The
reducing sugars and	3.1.8 Inorganic ions	series of a solute to	dipeptidases	haemoglobins in relation	mass flow hypothesis for
iodine/potassium iodide	Each type of ion has a	produce a calibration		to the oxyhaemoglobin	the mechanism of
for starch.	specific role, depending on	curve with which to	Teacher 2:	dissociation curve.	translocation in plants.
3.1.3 Lipids	its properties.	identify the water	3.4 Genetic information,	The cooperative nature of	The use of tracers and
(structures, functions and	Recognise the role of ions	potential of plant tissue.	variation and	oxygen binding.	ringing experiments to
properties).	3.4 Genetic	4. Investigation into the	relationships between	The effects of carbon	investigate transport in
The emulsion test for	information, variation	effect of a named variable	•	dioxide concentration on	plants.
lipids.	and relationships	on the permeability of	organisms	the dissociation of	- recognise correlations
3.1.4 Proteins	between organisms	cell-surface membranes.	Gene mutations and	oxyhaemoglobin (the Bohr	and causal relationships
3.1.4.1 General properties	3.4.1 DNA, genes and		how due to the	effect).	- interpret evidence from
of proteins (structures,	chromosomes (structures			Animal adaptations to	tracer and ringing
functions and properties)	and functions)	3.2.4 Cell recognition and	degenerate nature of	their environment by	experiments and to
The biuret test for		the immune system	the genetic code, not all	possessing different types	evaluate the evidence for
proteins.	Teacher 2:	Each type of cell has	base substitutions cause	of haemoglobin with	and against the mass flow
3.1.4.2 Many proteins	3.2 Cells	specific molecules on its	a change in the	different oxygen transport	hypothesis
are enzymes (structures,		surface that identify	sequence of encoded	properties.	
functions and properties)	3.2.2 All cells arise from	-pathogens	amino acids. Mutagenic	The general pattern of	Teacher 2:
The induced-fit model	other cell	-cells from other	agents can increase the	blood circulation in a	3.4 Genetic
of enzyme action.		organisms of the same	rate of gene mutation.	mammal. The gross	information, variation
The specificity of	Cell cycle stages	species	Mutations in the	structure of the human	and relationships
enzymes	Stages of mitosis	-abnormal body cells	number of	heart. Pressure and	between organisms
The effects of factors on	including appearance	-toxins	chromosomes by	volume changes and	3.4.6 Biodiversity within
	and behaviour of	Definition of antigen.	. ,	associated valve	a community
the rate of enzyme-	chromosomes	The effect of antigen	chromosome non-	movements during the	Biodiversity can relate to a
controlled reactions –	Division of the	-	disjunction during	cardiac cycle that maintain	range of habitats.
How models of enzyme	cytoplasm (cytokinesis)	variability on disease and disease prevention.	meiosis.	a unidirectional flow of	Species richness is a
action have changed	usually occurs,	Phagocytosis of	Meiosis produces	blood.	measure of the number of
over time	producing two new	pathogens.	daughter cells that are	The structure of arteries,	different species in a
1. Investigation into the	cells.		genetically different	arterioles and veins in	community.
effect of a named variable	Mitosis is a controlled	Destruction of ingested pathogens by lysozymes	from each other.	relation to their function.	An index of diversity and
	process.	harnogens by hysozymes	The process of meiosis		how to calculate it.

on the rate of an enzyme- controlled reaction. Teacher 2: Introduction to Maths at A level Biology Perform maths skills including: -converting between units, standard form, and prefixes, -using significant figures -rearranging formulae -magnification calculations -calculating percentages, errors, and uncertainties -drawing and interpreting line graphs. 3.2.1 Cell structure The structure of eukaryotic cells; structure and function of: -cell-surface membrane - nucleus (containing chromosomes, consisting of protein-bound, linear DNA, and one or more nucleoli) - mitochondria - chloroplasts (in plants and algae) - Golgi apparatus and Golgi vesicles - lysosomes (a type of Golgi vesicle that releases lysozymes)	Uncontrolled cell division can lead to cancers. Cancer treatments are directed at controlling the rate of cell division. Binary fission in prokaryotic cells Viral replication process 2. Preparation of stained squashes of cells from plant root tips; setup and use of an optical microscope to identify the stages of mitosis in these stained squashes and calculation of a mitotic index. 3.2.3 Transport across cell membranes The basic structure of all cell membranes. The arrangement and any movement of phospholipids, proteins, glycoproteins and glycolipids in the fluid- mosaic model of membrane structure. Cholesterol function 3.2.3 Transport across cell membranes; Movement across membranes occurs by:	The response of T lymphocytes to a foreign antigen (the cellular response). The response of B lymphocytes to a foreign antigen, clonal selection and the release of monoclonal antibodies (the humoral response). Definition of antibody. 3.4 Genetic information, variation and relationships between organisms 3.4.3 Genetic diversity can arise as a result of mutation or during meiosis	 3.4.4 Genetic diversity and adaptation. Genetic diversity as the number of different alleles of genes in a population. Genetic diversity is a factor enabling natural selection to occur. The principles of natural selection in the evolution of populations. Directional selection, exemplified by antibiotic resistance in bacteria, and stabilising selection, exemplified by human birth weights. Natural selection results in species that are better adapted to their environment. These adaptations may be anatomical, physiological or behavioural. G. Use of aseptic techniques to investigate the effect of antimicrobial substances on microbial growth. 	The structure of capillaries and the importance of capillary beds as exchange surfaces. The formation of tissue fluid and its return to the circulatory system. Teacher 2: 3.4 Genetic information, variation and relationships between organisms 3.4.5 Species and taxonomy Two organisms belong to the same species if they are able to produce fertile offspring. Courtship behaviour as a necessary precursor to successful mating. The role of courtship in species recognition. A phylogenetic classification system attempts to arrange species into groups based on their evolutionary origins and relationships. It uses a hierarchy in which smaller groups are placed within larger groups, with no overlap between groups. Each group is called a taxon (plural taxa). One hierarchy comprises the taxa: domain, kingdom, phylum, class, order, family, genus and species.	Farming techniques reduce biodiversity. The balance between conservation and farming. 3.4.7 Investigating diversity Genetic diversity within, or between species, can be made by comparing: - the frequency of measurable or observable characteristics - the base sequence of DNA - the base sequence of mRNA - the base sequence of mRNA - the amino acid sequence of the proteins encoded by DNA and mRNA Quantitative investigations of variation within a species involve: - collecting data from random and systematic samples - calculating a mean value of the collected data and the standard deviation of that mean - interpreting mean values and their standard deviations.
---	---	---	---	---	--

- ribosomes	-simple diffusion		Pinomial system	
- rough endoplasmic	•		Binomial system Appreciate that advances	
reticulum and smooth	(involving limitations		in immunology and	
endoplasmic reticulum	imposed by the nature		genome sequencing help	
	of the phospholipid		o i o i	
- cell wall (in plants, algae	bilayer)		to clarify evolutionary	
and fungi)	fosilitated diffusion		relationships between	
- cell vacuole (in plants).	-facilitated diffusion		organisms.	
In complex multicellular	(involving the roles of			
organisms, eukaryotic	carrier proteins and			
cells become specialised	channel proteins)			
for specific functions.	- osmosis (explained in			
Specialised cells are	terms of water			
organised into tissues,				
tissues into organs and	potential)			
organs into systems	- active transport			
Prokaryotic cells differ	(involving the role of			
from eukaryotic cells in	carrier proteins and the			
having:	importance of the			
 cytoplasm that lacks 	hydrolysis of ATP)			
membrane-bound				
organelles	-co-transport			
- smaller ribosomes	(illustrated by the			
- no nucleus; instead	absorption of sodium			
they have a single	ions and glucose by cells			
circular DNA molecule	lining the mammalian			
that is free in the	ileum)			
cytoplasm and is not				
associated with	 Adaptations of cells for 			
proteins	rapid transport across			
- a cell wall that	their membranes			
contains murein, a				
glycoprotein.	- How factors affect the			
In addition, many	rate of movement			
prokaryotic cells have:	across cell membranes			
- one or more plasmids				
- a capsule surrounding				
the cell				
3.2.1.3 Methods of				
studying cells				
stadying cens				

The principles and limitations of optical microscopes, transmission electron microscopes and scanning electron microscopes. 3.2.1.3 Methods of studying cells Measuring the size of an object viewed with an optical microscope. The difference between magnification and resolution. Use of the formula: Principles of cell fractionation and ultracentrifugation as					
components.					
End of term 1 assessment to cover: 3.1 Biological molecules and 3.2 Cells		End of term 2 assessment t 3.1 Biological molecules, 3. exchange substances with 3.4 Genetic information, va relationships between orga	2 Cells, 3.3 Organisms their environment and ariation and	End of year assessment to 3.1 Biological molecules, 3 exchange substances with 3.4 Genetic information, w relationships between org	3.2 Cells, 3.3 Organisms their environment and variation and
Building understanding: Rationale / breakdown		Building understanding: Rationale / breakdown		Building understanding: Rationale / breakdown	
for your sequence of lessons:		for your sequence of lessons:		for your sequence of lessons:	
Introduction to Statistics at A Level Biology: This is a short sequence of lessons designed to give		Biological molecules:		3.3 Organisms exchange substances with their environment	
This is a short sequence of lessons designed to give students a greater appreciation of how to correctly		3.4 Genetic information, variation and relationships between organisms		Understanding the process of digestion and	
prepare experiments, verify conclusions and		Having recently finished studying the structure and		absorption builds upon the study of intestinal	
properly interpret results. These skills underpin		function of DNA, students have the foundations to		epithelial cells done with Teacher 2 earlier on in	
everything they will study	•	understand that genes are s a particular site on a DNA m	ections of DNA located at	the year. This provides an adaptations for the absor	understanding of their

taught explicitly and then revisited regularly over	They are also able to apply their understanding of	In large organisms, exchange surfaces are associated
the rest of the topics and required practical's.	nucleotide bases to understand that the base	with mass transport systems that carry substances
	sequence of each gene carries the coded genetic	between the exchange surfaces and the rest of the
	information that determines the sequence of amino	body and between parts of the body which is
Biological molecules:	acids during protein synthesis. The genetic code used	underpinned by the concept of surface area to
All life on Earth shares a common chemistry. These	is the same in all organisms, providing indirect	volume ratio which was taught earlier this year. Mass
biological molecules are the basis of all the structures	evidence for evolution which is studied in year 13.	transport maintains the final diffusion gradients that
and chemical reactions that are taught later on in the	3.3 Organisms exchange substances with their	bring substances to and from the cell membranes of
course and so a solid understanding of them is an	environment	individual cells (as explained in transport across
essential foundation. This provides indirect evidence for	The exchange of substances between the internal	membranes). It also helps to maintain the relatively
evolution which is a topic that is taught in year 13.	and external environments takes place at exchange	stable environment that is tissue fluid, which starts to
Despite their great variety, the cells of all living	surfaces which contain specialised cells studied	support the development of homeostasis concepts
organisms contain only a few groups of carbon-based	previously in the cells topic. To truly enter or leave an	for study in year 13.
compounds that interact in similar ways. Carbohydrates	organism, most substances must cross cell plasma	
are commonly used by cells as respiratory substrates;	membranes (as taught earlier by teacher 2 in	3.4 Genetic information, variation and relationships
this allows students to understand respiration in year	transport across membranes). Most cells are too far	between organisms
13. They also form structural components in plasma	away from exchange surfaces, and from each other,	This genetic diversity is acted upon by natural
membranes and cell walls which is taught in Autumn 2.	for simple diffusion alone to maintain the	selection (which gives students the basis for their
Lipids have many uses, including the bilayer of plasma	composition of tissue fluid within a suitable	study of evolution next year), resulting in species
membranes taught in Autumn 2, and certain hormones	metabolic range so there is a need for organ systems	becoming better adapted to their environment.
as taught in year 13 and as respiratory substrates, as	(a concept studied in the specialised cells topics	-Variation within a species can be measured using
also taught in year 13.	earlier this year).	differences in the base sequence of DNA or in the
Proteins form many cell structures. They are also		amino acid sequence of proteins (the foundations for
important as enzymes (comes up throughout year 12	3.2 Cells	this were taught in Biological molecules at the start
and 13 eg in respiration and photosynthesis), chemical		of the year).
messengers (Hormones topic in Year 13) and	Cell-surface membranes contain embedded proteins	- Biodiversity within a community can be measured
components of the blood (mass transport later in year		- Diodiversity within a community can be measured

using species richness and an index of diversity, this topic involves field work which gives students a strong foundation for their ecology unit and required practical in year 13.

13. The most common component of cells is water; hence our search for life elsewhere in the universe involves a search for liquid water (students develop this idea when studying photosynthesis in year 13). Understanding the properties of water is essential in order to understand how water is transported within organisms- a topic taught later on in year 12.

12). Nucleic acids carry the genetic code for the

production of proteins. The genetic code is common to

providing evidence for evolution which is taught in year

viruses and to all living organisms (Provides the basis

upon which to learn variation through mutations),

which act as antigens, allowing recognition of 'self' and 'foreign' cells by the immune system 9this links back to work on structure of cell membranes done last term). Interactions between different types of cell are

involved in disease, recovery from disease and prevention of symptoms occurring at a later date if exposed to the same antigen, or antigen-bearing pathogen (Students have considered lymphocyte structure and function in the prior study of specialised cells).

3.4 Genetic information, variation and relationships between organisms

Students should be able to relate the structure of proteins to properties of proteins named throughout the specification in year 12 and 13. Students should appreciate that enzymes catalyse a wide range of intracellular and extracellular reactions that determine structures and functions from cellular to whole-organism level eg photosynthesis and respiration in year 13.

Introduction to Maths at A Level Biology: This is a short sequence of lessons designed to reinforce the foundation maths skills students need to access the A Level Biology course fully. For example; calculating magnification of cells, converting between units, rounding off answers properly, rearranging formulae, calculating uncertainties and errors, and choosing the most appropriate ways of displaying data. These skills are taught explicitly and then revisited regularly over the rest of the topics and required practical's.

3.2 Cells

All life on Earth exists as cells, therefore to progress further in the study of Biology, a sound understanding of the basic building blocks is required which is why it is the first topic taught. These have basic features in common. Differences between cells are due to the addition of extra features. This provides indirect evidence for evolution which is studied in year 13. Cells are the building blocks of tissues, organs and systems covered in the Exchange and transport topic taught later on in year 12. All cells arise from other cells, by binary fission in prokaryotic cells and by mitosis and meiosis in eukaryotic cells (the later which is taught later on in year 12 during the Variation topic). Cells may be adapted for rapid transport across their internal or external membranes by an increase in surface area of, or by an increase in the number of protein channels and carrier molecules in, their

Biological diversity – biodiversity – is reflected in the vast number of species of organisms, in the variation of individual characteristics within a single species and in the variation of cell types within a single multicellular organism (building on their study of genes from last term).

Differences between species reflect genetic differences. Differences between individuals within a species could be the result of genetic factors, of environmental factors, or a combination of both.
Genetic diversity within a species can be caused by gene mutation (building on their understanding of the structure of genes from last term), chromosome mutation (building on their study of chromosome structure last term) or random factors associated with meiosis and fertilisation.

 membranes (Specialisations of cells was covered last term and is the foundation to understand this). explain the adaptations of specialised cells in relation to the rate of transport across their internal and external membranes The subsequent destruction of ingested pathogens by lysozymes (which were studied in the organelles sections of cell structure topic). All cells have a cell-surface membrane and, in addition, eukaryotic cells have internal membranes. The basic structure of these plasma membranes is the same and enables control of the passage of substances across exchange surfaces by passive or active transport. Cell-surface membranes contain embedded proteins (structural proteins studied last term with teacher 1). Some of these are involved in cell signalling – communication between cells. 					
Home – Learning: Home learning will be set from the resources in the topic folder. Students will have standardised topic workbooks for each topic to complete as part of their home learning. Students will also be asked to complete various essays as part of their home learning for example 'the importance of water'.	Home – Learning: Home learning will be set from the resources in the topic folder. Students will have standardised topic workbooks for each topic to complete as part of their home learning. Students will also be asked to complete various essays as part of their home learning for example 'the importance of diffusion'.	Home – Learning: Home learning will be set from the resources in the topic folder. Students will have standardised topic workbooks for each topic to complete as part of their home learning. Students will also be asked to complete various essays as part of their home learning for example 'the importance of nucleic acids and their derivatives'			
Reading / literacy: Literacy support is provided through scaffolding for the essay questions; using PEEL approach (Point, Explanation, Example, Link back to question) in order to support students in the development of their extended writing skills. Students are also taught to read for purpose by underlining key command words in exam questions. Students are regularly set pre-learning which involves outside reading and note taking, thereby supporting their reading and comprehension skill development.					
Numeracy: 10% of the A level biology exams are assessed via mathematical questions including the main key areas below: Standard Form –to read standard form and convert into and from standard form. Also understanding the actual size of particular organelles. For instance, a mitochondrion would be measured in micrometres where as a virus would be measured in nanometres. Powers and indices – Understanding and manipulating powers. Shapes – to calculate the area, perimeter and volume of shapes such as cones and spheres. Units – As well as micrometres and nanometres; how to convert from one unit to another so grams to kilograms for instance.					

Statistical Tests – to interpret the results of a statistical test when given the formulas and the variables. Understanding the significance of a test result and why that test was selected.

Graphs and Data – Different types of graphs and data questions. How to read and construct a histogram as well as interpret bar charts, line graphs, scatter graphs.

Algebra in A Level Biology – Understanding and using the principle calculations which requires algebra skills. Other types of algebra questions will be limited to basic rearrangements and substitutions.

Enrichment / opportunities to develop cultural capital (including careers, WRL and SMSC):

Enrichment workshops, lectures and visits will be organised as part of the science week programme. Enrichment day visit to Natural History Museum. Subscription to Biological Sciences Review magazine, which students are referred to for outside reading. Where possible students will be given the opportunity to attend an A level Biology field trip.