Programme of study for Applied Science Diploma Year 13 2024-2025

Autumn (1 st and 2 nd term)	Spring (1 st and 2 nd term)	Spring (1 st and 2 nd term)	Spring (1 st and 2 nd term)
Teacher 1, 2 and 3	Summer (1 st and 2 nd term)	Summer (1 st and 2 nd term)	Summer (1 st and 2 nd term)
	Teacher 1	Teacher 2	Teacher 3
Other timescale: From: September 2024 To: January 2025	Other timescale: From: End of January 2024 To: May 2024	Other timescale: From: End of January 2024 To: May 2024	Other timescale: From: End of January 2024 To: May 2024
Topic: Unit 5: Principals of Applications of Science II. 120 marks with a total time of 2.5 hours, undertaken in three timed sessions of 50 minutes for each of Biology, Chemistry and Physics. First	Topic: Unit 4: Laboratory techniques and their applications. Coursework based. Diploma students only to take this unit.	Topic: Unit 6: Investigative Project. Coursework based. Diploma students only to take this unit.	Topic: Unit 12: Diseases and Infection. Coursework based. Diploma and Extended Certificate students to take this unit.
 exam to be sat in January 2025. Diploma students to take this unit. Skills (students should be able to do): Researching, reading, essay writing, exam practice. Personal learning thinking skills including: independent enquirers, creative thinkers, reflective learners, team workers, self-managers, effective participants 	Skills (students should be able to do): Researching, reading, essay writing, exam practice. Personal learning thinking skills including: independent enquirers, creative thinkers, reflective learners, team workers, self-managers, effective participants. 	 Skills (students should be able to do): Reading, revising, essay writing, exam practice. Personal learning thinking skills including independent enquirers, creative thinkers, reflective learners, team workers, self-managers, effective participants. Students will carry out a scientific literature search and review, considering the project's aims and objectives, then produce a realistic plan and carry out the project safely using your scientific investigation skills, project management skills and what you have learnt from the other units. Finally, students will consider the project outcomes and suggest amendments that may have improved those outcomes. To complete the	Skills (students should be able to do): Researching, reading, essay writing, exam practice. Personal learning thinking skills including: • independent enquirers, • creative thinkers, • reflective learners, • team workers, • self-managers

		students will need to draw on learning from across your programme. Completing an investigative project is an excellent way for you to develop an understanding of the science-related workplace. The skills developed in this unit will be of considerable benefit for progression to higher education in a variety of science and science-related courses and to employment in the science or applied science sector Time management and organisation. • Adhering to and following appropriate standards and protocols. • Taking responsibility for completing tasks/procedures. • Making judgements within defined parameters. • Application of safe working practice. • Give and receive constructive feedback. • Identify, organise and use resources effectively to complete tasks. • Utilising channels of communication. • Resourceful and using initiative.	
Key Learning Outcomes (students should know):	Key Learning Outcomes (students should know):	Key Learning Outcomes (students should know):	Key Learning Outcomes (students should know):
AO1: Students should be able to demonstrate knowledge of scientific facts, terms, definitions, and scientific formulae. Command words: describe, draw, explain, identify, name, state Marks: ranges from 18 to 24 marks.	Assignment A: Students to understand the importance of health and safety in scientific organisations. Assignment B: Students to be able to explore manufacturing techniques and testing methods for an organic liquid	 Assignment A: Students to undertake a literature search and review to produce an investigative project proposal. Assignment B: Students to produce a plan for an investigative project based on the proposal. 	 Assignment A: Students to investigate different types of diseases and infections that can affect humans. Assignment B: Students to examine the transmission of infectious diseases and how this can be prevented.
demonstrate understanding of scientific			

concepts, procedures, processes and techniques and their application Command words: calculate, describe, draw, explain, give, show, state. Marks: ranges from 51 to 60 marks AO3: Students should be able to analyse, interpret and evaluate scientific information to make judgements and reach conclusions Command words: analyse, comment, describe, explain, give, state Marks: ranges from 18 to 24 marks.	 Assignment C: Students to explore manufacturing techniques and testing methods for an organic solid. Assignment D: Students to understand how scientific information may be stored and communicated in a workplace laboratory 	 Assignment C: Students to safely undertake the project, collecting, analysing and presenting the results. Assignment D: Students to review the investigative project using correct scientific principles. 	Assignment C: Students to understand how infectious diseases can be treated and managed. Assignment D: Students to understand how the human body responds to diseases and infections.
AO4: Students should be able to make connections, use and integrate different scientific concepts, procedures, processes or techniques. Command words: calculate, comment, explain Marks: ranges from 12 to 15 marks			
 End of term 1 assessment to cover: End of chapter test on various Chemistry topics End of chapter test on various Biology topics End of chapter test on various Physics topics. Mock exam to be sat in December 2025 before the real exams. 	No end of term assessment for this unit as coursework based.	No end of term assessment for this unit as coursework based.	No end of term assessment for this unit as coursework based.
Building understanding: Rationale for your sequence of lessons:Chemistry: The sequence of lessons for Learning Aim A on the properties and uses of substances is structured to progressively build students' understanding of chemical properties, organic compounds, and energy changes in industrial contexts. The	Building understanding: Rationale for your sequence of lessons: Assignment A: The sequence of lessons for Learning Aim A focuses on a comprehensive understanding of health and safety in scientific organizations. The rationale behind this sequence is structured to progressively build students'	Building understanding: Rationale for your sequence of lessons: The sequence of lessons for undertaking an investigative project proposal is designed to guide students systematically through the stages of planning, executing, analysing, and reviewing a scientific investigation. The goal is to equip students with the skills to	Building understanding: Rationale for your sequence of lessons: The sequence of lessons for investigating diseases and infections is designed to give students a structured understanding of the nature, transmission, prevention, treatment, and body responses to diseases. This progression builds a comprehensive

lessons are designed to cover both theoretical knowledge and practical applications, ensuring that students can relate chemical principles to real-world industrial processes.

A1. Introduction to Chemical Properties and Production of Substances

Objective: To introduce students to the chemical properties of substances, including amphoteric character, basicity of metal oxides, and the ease of electrolysis.

Why first? Understanding chemical properties is foundational for comprehending how these substances are used and produced. This knowledge is critical for more complex topics, such as their industrial applications.

Skills/knowledge: Students will learn to identify and explain the chemical properties of different substances, setting the stage for understanding their production and uses in industry.

Uses of Substances in Industrial Processes

Objective: To explore the specific uses of substances like Ca(OH)2 in effluent treatment and transition metals as catalysts in key industrial processes.

Why here? Once students have a basic understanding of chemical properties, they can move on to learning how these knowledge and understanding, ensuring they can appreciate the critical nature of health and safety in scientific contexts.

Introduction to Health and Safety Legislation

Objectives: Introduce students to the fundamental principles of health and safety legislation. This foundational lesson will cover the management of health and safety, the importance of personal protective equipment (PPE), and the use of hazardous substances.

Rationale: Understanding the legal framework is essential for grasping the responsibilities of organizations and individuals in maintaining safety. This lesson sets the groundwork for more detailed discussions on specific policies and procedures.

In-depth Analysis of Health and Safety Policies

Objectives: Scrutinize real-world health and safety or health, safety, and environmental policies from various scientific organizations.

Rationale: Applying theoretical knowledge to actual policies helps students see the relevance of legislation in practice. Analyzing examples fosters critical thinking and allows students to identify best practices.

independently conduct research projects with a foundation in scientific principles, ethical considerations, and effective data handling.

Learning Aim A: Literature Search and Project Proposal

Identifying Criteria for Literature Review

Establishing Search Parameters: This first lesson focuses on defining search criteria, which is essential for developing a focused literature review. By setting parameters (e.g., types of sources, publication dates, and relevance), students learn how to refine their search to gather accurate and reliable information.

Practical Application: These skills are crucial for ensuring that the literature review is targeted and relevant, a foundation for building an evidencebased rationale.

Nature of Study and Sources of Information

Choosing Research Methods and Sources: This lesson covers selecting appropriate study types (fieldwork, lab work, etc.) and reliable sources of

information (e.g., journal articles, textbooks, websites). Emphasis on sourcing from reputable publishers and organizations trains students in discerning high-quality information. foundation on disease mechanisms, prevention strategies, and the human immune response, essential for careers in healthcare, biology, and public health.

Learning Aim A: Investigate Different Types of Diseases and Infections

Pathogens and Infectious Diseases

Lesson Focus: Introduce the major pathogen types—bacteria, parasites, viruses, fungi, and protozoa—and how they invade and affect the body. Key characteristics of these pathogens and their life cycles lay the groundwork for understanding how they cause disease.

Rationale: Recognizing pathogen types and their mechanisms of infection is crucial for understanding how different diseases manifest and for identifying effective prevention and treatment methods.

Infectious Diseases and Zoonotic Diseases

Lesson Focus: Explore specific infectious diseases, including HIV, malaria, hepatitis, and zoonotic diseases like rabies and avian flu. Students learn about diseases transmitted from animals to humans and how pathogens cross species barriers.

Rationale: Awareness of zoonotic diseases provides insight into how diseases spread and mutate,

properties make substances suitable for	Consequences of Non-compliance	Developing Research Skills: Knowing	highlighting the importance of
industrial applications. This lesson		where and how to gather information is	prevention, particularly in areas where
provides context for the relevance of	Objectives : Discuss the implications of	critical to constructing an accurate	animal-human contact is frequent.
the properties covered in the previous	failing to comply with health and	literature review and establishing the	
lesson.	safety legislation, including legal,	basis of their project.	Dietary and Environmental Diseases
	financial, and ethical consequences.		
Skills/knowledge: Students will explore		Referencing and Harvard Referencing	Lesson Focus: This lesson covers
how substances are chosen for	Rationale: Highlighting real-life	System	diseases related to diet (e.g., diabetes,
industrial processes based on their	consequences emphasizes the		obesity) and environmental factors
chemical properties, such as alumina in	importance of adhering to health and	Referencing Skills: Proper citation using	(e.g., pollutants and radiation). Students
refractories and catalysts in the Haber	safety standards. This lesson aims to	the Harvard referencing system is vital for	examine how lifestyle and surroundings
process.	instil a sense of responsibility and	academic integrity and transparency. This	can contribute to disease risk.
	awareness among students.	lesson helps students understand	
Purification, Extraction, and		referencing protocols, ensuring they give	Rationale: Emphasizing the impact of
Manufacture of Key Industrial	Identifying Hazards in Scientific	credit to original authors and avoid	diet and environment on health
Substances	Organizations	plagiarism.	promotes a holistic understanding of
			disease prevention and management,
Objective: To understand the extraction	Objectives : Introduce various hazards	Professional Research Practice: Learning	especially relevant to public health and
and manufacture of key industrial	commonly found in scientific settings,	this skill early prepares students for the	preventive medicine.
substances, such as alumina from	including chemical, physical, and	professional standards expected in	
bauxite and titanium from its ore.	environmental hazards.	academia and industry.	Genetic and Degenerative Diseases
Why now? After understanding how	Rationale: Understanding different	Investigative Project Proposal	Lesson Focus: Introduction to genetic
chemical properties are used in	types of hazards prepares students to	Development	diseases (e.g., cystic fibrosis) and
industry, students are ready to explore	recognize potential risks in their		degenerative diseases (e.g.,
the processes used to extract and purify	environments. This lesson serves as a	Creating a Proposal: With foundational	Alzheimer's) explores how genetic
substances. This lesson focuses on real-	bridge to more specific hazard	research in place, students develop their	mutations and aging processes can lead
world applications of their chemical	categories, such as COMAH sites and	project proposal, focusing on	to disease.
knowledge.	explosive atmospheres.	background, hypothesis, aims, objectives,	
		and anticipated limitations. This	Rationale: Understanding genetic and
Skills/knowledge: Students will learn	Exploration of Specific Hazards	encourages them to articulate their	degenerative diseases builds knowledge
about different methods of extraction		research ideas clearly and assess project	about non-infectious diseases,
and purification, comparing production	Objectives : Delve into specific hazards	feasibility.	preparing students to differentiate
techniques like the Hall-Héroult process	like electrical risks, working at height,		between types of diseases and consider
and the electrolysis of brine.	lone working, and noise.	Establishing Research Focus: Crafting a	inherited or age-related risks.
		clear proposal builds students' ability to	
Relating Properties of Substances to	Rationale: By focusing on individual	conduct structured research and identify	Progression of Disease Over Time
	horovelo, etudovsto com antin o more	notential challenges early	
Their Uses and Production	nazards, students can gain a more	potential enancinges carry.	
Their Uses and Production	detailed understanding of how these	potential chancinges curry.	Lesson Focus: Students learn about

Objectives To compact the surgestive of	anning and the thick shows the	Learning Aim D. Drais et Discusing	
Ubjective: To connect the properties of	environments. This helps them to	Learning Aim B: Project Planning	periods, latency, and now diseases can
substances to their production methods	connect theory with practical		Impact everyday life.
and industrial uses.	applications in safety management.	Scheduling and Limeline	
			Rationale: This lesson introduces the
Why here? Having explored the	Working Environments and Safety	Project Timeline: Planning a project	concept of disease progression, which is
extraction and manufacture of	Protocols	timeline with milestones introduces time	vital for understanding disease
substances, students can now focus on		management skills. Setting specific dates	management and the importance of
how the properties of substances	Objectives: Analyse working	for the project start, completion, and	early detection.
dictate their production processes and	environments in scientific settings,	milestones helps students stay organized	
applications.	such as laboratories and educational	and adhere to deadlines.	Learning Aim B: Examine the
_	institutions, emphasizing relevant		Transmission of Infectious Diseases
Skills/knowledge: Students will analyse	safety protocols.	Managing Long-Term Projects:	and Prevention Methods
and compare different production		Developing a realistic schedule trains	
methods, evaluating how chemical	Rationale: This lesson integrates	students to anticipate and manage time,	Methods of Disease Transmission
properties such as amphoterism or	knowledge of hazards with practical	critical skills for independent research.	
basicity influence industrial choices.	safety measures tailored to different		Lesson Focus: The modes of
	environments. Understanding how to	Research Methods and Resources	transmission (direct, indirect, vectors)
A2: Introduction to Organic	implement safety measures in varied		for diseases are explored, with
Compounds and Hydrocarbon	settings is crucial for future scientific	Designing the Experiment: Lessons on	examples like body fluids, contaminated
Structures	professionals.	selecting relevant methods, participants,	surfaces, and vectors like mosquitoes.
		equipment, and materials teach students	
Objective: To introduce students to the	Conclusion	to match methodologies with research	Rationale: Knowing transmission
structures, formulae, and nomenclature		objectives. Understanding resources and	methods allows students to understand
of alkanes, alkenes, and their isomers.	This structured sequence is designed	contingency planning further prepares	risk factors for infection and the
	to provide a comprehensive	students for smooth project execution.	importance of controlling the spread of
Why now? After mastering the	understanding of health and safety in		pathogens.
properties and production of inorganic	scientific organizations. Starting with	Practical and Resource Management:	
substances, students are ready to	legislation and progressing through	Effective planning of methods and	Prevention Methods for Infectious
explore the structures and reactions of	policies, consequences, hazard	resources is essential in both research	Diseases
organic compounds, particularly	identification, and specific safety	and industry for ensuring accuracy, cost-	
hydrocarbons, which are of commercial	protocols ensures that students not	efficiency, and feasibility.	Lesson Focus: Preventative approaches,
importance.	only learn about health and safety but		such as prophylaxis, PPE, safe practices,
	also understand its application in real-	Health, Safety, and Ethical	and environmental controls (e.g.,
Skills/knowledge: Students will learn to	world scenarios. By the end of the	Considerations	eliminating standing water to reduce
represent and name organic	series, students will be equipped with		mosquito populations).
compounds according to IUPAC	the knowledge and skills necessary to	Risk and Ethical Assessments:	
nomenclature, understand the	navigate and contribute to a safe	Introducing health and safety	Rationale: This lesson teaches essential

requirements (hazard identification, PPE,

COSHH) alongside ethical considerations

ensures students conduct safe and ethical

scientific working environment.

differences between straight chain,

branched, and cyclic compounds, and

Rationale: This lesson teaches essential public health strategies that are fundamental in disease prevention and

begin exploring the bonding in these	Assignment B The sequence of lessons	research. Performing a risk assessment	control, a critical aspect of managing
molecules.	for Learning Aim B is designed to	also prepares them for professional	pandemics and outbreaks.
	provide a comprehensive exploration	standards in laboratories.	
Bonding, Reactions, and Properties of	of manufacturing techniques and		Vaccination and Herd Immunity
Alkanes and Alkenes	testing methods for organic liquids.	Prioritizing Safety and Ethics:	
	This structured approach ensures	Understanding these aspects ensures	Lesson Focus: Detailed coverage of
Objective: To explore the bonding in	students acquire both theoretical	that students conduct research	vaccination types (e.g., attenuated, live
alkanes and alkenes, including sigma	knowledge and practical skills,	responsibly and with awareness of their	antigens), how vaccines stimulate
and pi bonding, hybridisation, and the	enabling them to understand and	ethical and legal responsibilities.	immunity, and the concept of herd
effect of these bonds on properties like	apply key concepts in organic		immunity.
boiling points.	chemistry.	Learning Aim C: Conducting the Project,	
		Data Collection, and Analysis	Rationale: Understanding vaccination's
Why here? Once students understand	Introduction to Manufacturing		role in preventing disease spread is key
hydrocarbon structures, they need to	Techniques	Experimental Procedures and	to appreciating public health initiatives,
explore the bonding within these		Techniques	vaccine development, and the science
molecules to understand how it affects	Objectives : Introduce students to		behind immunization programs.
their physical properties and reactivity.	various manufacturing techniques	Implementing Practical Skills: Teaching	
	used for organic liquids, with an	proper equipment use, adherence to	Management of Infectious Diseases by
Skills/knowledge: Students will learn	emphasis on reflux, distillation, and	safety protocols, and efficient	Organizations
about hybridisation, bond angles, and	solvent extraction.	observation skills ensures students	
intermolecular forces, and how these		conduct their experiments with precision	Lesson Focus: Examines the roles of
factors affect the boiling points and	Rationale: Starting with the	and consistency, foundational skills for	WHO, NHS, and NGOs (e.g., Médecins
stability of hydrocarbons. This prepares	foundational principles of these	reliable data collection.	Sans Frontières) in controlling and
them for understanding the reactions	techniques establishes a solid base.		managing disease outbreaks.
and industrial uses of hydrocarbons.	Understanding the principles behind	Hands-On Research Skills: These lessons	
	each method allows students to	are essential for developing accuracy in	Rationale: Familiarity with
Hydrocarbon Reactions and Their	appreciate their significance in organic	scientific investigation and following	organizational roles in health crisis
Commercial Importance	synthesis.	industry standards, like GLP and GMP.	management provides students with a
			broader view of global health
Objective: To study important reactions	Reflux and its Applications	Data Collection, Organization, and	infrastructure and response protocols.
of hydrocarbons, including free radical		Analysis	
substitution and electrophilic addition,	Objectives : Discuss the principles of		Learning Aim C: Understanding the
as well as their commercial applications	reflux and examine laboratory and	Data Handling and Analysis: Lessons on	Treatment and Management of
like polymerisation and cracking.	industrial equipment used.	data recording, logbook maintenance,	Infectious Diseases
		and statistical analysis (standard	
Why now? After understanding the	Rationale: Reflux is a critical	deviation, t-test) provide students with	Methods of Treatment
bonding in hydrocarbons, students are	technique in organic synthesis, and	tools for processing and analysing data	
ready to explore their reactivity and	exploring its applications nelps	accurately, essential for interpreting	Lesson Focus: Covers various
	students see its importance in	research outcomes.	treatments for infectious diseases,
	ensuring complete reactions while		including antibiotics, antivirals,

how this leads to commercially gaptificant reactions. preventing loss of volatile components. This lesson prepares students for more complex tudents to communicating Findings: Teaching appropriate methods for further for follation terns, such as stigma, concepts of inhalpy change, standard for follation enhances students and the energy changes students and the energy changes students and the energy changes students and the energy changes students for more and follation, including for follation enhances students and the energy changes students for more subtus and scuss various chemicals used to remove impunities. Professional Data Reporting: Learning presentation of results is essential. Rationale: Exploring barries to is critical for academic and industrial for isolating organic compounds. This lesson for tor substances, students for presenting reserving formally in nogranic synthesis, linking potific and understand the mortat				
significant reactions.components. This lesson prepares students for more complex techniques.skills/knowledge: Students will analyze techniques.like rehydration and immunoglobulins. meaningful insights from their data, validate their methods, and asses experimental accuracy and reliability. Data Presentation particularly fundamental separation is a fractional distillation, including laboratory equipment and industrial distillation is a fundamental separation technique in granic chemistry. Understanding the differences between simple and fractional distillation is a fundamental separation technique in organic chemistry. Understanding the differences between simple and fractional distillation is a fundamental separation is accessible to various and contraindications.like rehydration and immunoglobulins. Rationale: Experimental accuracy and reliability. Data PresentationObjective: To introduce students to the organic chemistry. Understanding the differences between simple and fractional distillation is accessible to various and contraindications.Communicate findings: Teaching appropriate communicate findings: Teaching appropriate communicate findings: Clearing auroness and communication of nesults is escential.Objective: To introduce students why here? Having studied the structure students and the energy efficiency in notifies, and understand the energy ficiency in nostical sused to removalSolvent Extraction and Impurity solvent Extraction and Impurity is contical or accurate and industry- based research, where clear communitics accurately and thoughtfully refies avanders of health equipy and patient-centred care approaches.Distillation.Solvent Extraction is organic compounds.Earning Aim D: Project Review and Scientific Reporting<	how this leads to commercially	preventing loss of volatile	Analytical Skills Development: These	antifungals, and supportive therapies
skills/knowledge: Students will analyse reaction mechanisms, such as free radical substitution in alknese, and their application in processes like the production of polymers.students for more complex techniques.meaningful insights from their data, validate ther methods, and assess experimental accuracy and reliability.Rationale: Learning about treatment types and their methods, and substitution in alknese, and their application in processes like the production of polymers.Rationale: Learning about treatment types and their methods, and substitution in alknese, and their application in processes like the fractional distillation rest.Rationale: Learning about treatment types and their methods and substitution in alknese, and their application in processes like the fractional distillation is a treatment and distribution to servers.Rationale: Learning about treatment types and their methods, and substitution is accurately and their methods and substitution alking the methods for data representation also helps ensure treatment access, such as stigma, cultural beliefs, and accessibility, are audiences.Rationale: Learning the information is accurately and thoughtfully is critical for academic and industry- based research, where clear communication of results is essential.Rationale: Exploring barriers to treatment access, such as adverse reactions and contraindications.Skills/knowledge: Students will knowle resolution in these reactions, substitution is accurated the energy changes sacolicat with these reactions, intervier treatment accesses.Solvent Extraction and Impurity Rationale: Solvent extraction and discuss various substitutions, interpret reaction park subances, substances, substances, substances, substances, substance, substance, substances	significant reactions.	components. This lesson prepares	skills empower students to derive	like rehydration and immunoglobulins.
Skills/knowledge: Students will analyze techniques.techniques.Nationale: Learning about treatment experimental accuracy and reliability.Rationale: Learning about treatment experimental accuracy and reliability.Rationale: Learning about treatment experimental accuracy and reliability.Rationale: Learning about treatment accuracy and reliability.Objectives: To introduce students to the organic dremity change, standard and reactions of substances, studentsRationale: Distillation is a fractional distillation technique in organic company and information is accurately and thoughtfully is certical for academic and industry- based research, where clear communication of results is essential.Rationale: Exploring barries to treatment access, such as stigna, cultural beliefs, and accurately and thoughtfully is certical for academic and industry- based research, where clear communication of results is essential.Rationale: Exploring barries to treatment accuracy and results is	_	students for more complex	meaningful insights from their data,	
reaction mechanisms, such as free radical substitution in alkanes, and their application in processes like the racking of hydrocarbons and the production of polymers. Distillation Techniques Distillation Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques Techniques	Skills/knowledge: Students will analyse	techniques.	validate their methods, and assess	Rationale: Learning about treatment
Distillation TechniquesDistillation TechniquesData PresentationStudents with knowledge of howelectrophili addition in alkenes and tracking of hydrocarbons and the production of polymers.Discitives: Cover both simple and fractional distillation, including laboratory equipment and industrial distillation towers.Data PresentationStudents with knowledge of how3. Introduction to Energy Changes in nubstrial ReactionsRationale: Distillation is a fundamental separation technique in fractional distillation enhancesCommunicating Findings: Teaching appropriate methods for data presentation led, Lables, graphs) enables Access to and Acceptance of Treatment differences between simple and fractional distillation enhancesAccess to and Acceptance of Treatment students a stigma, cultural beliefs, and accessibility, are discussed, as well as adverse reactions and contraindications.Why here? Having studied the structure and reactions of substances, students socient to industry based research, where clear communication of results is essential.Professional Data Reporting: Learning to present data accursativa and thoughtfully is critical for academic and industry- based research, where clear communication of results is essential.Rationale: Exploring barriers to treatment highlights the social and economic factors affecting healthcare, forsibiling organic compounds. This prepare students for present for presenting research purity in organic synthesis, linking bact to the previous lessons on purity in organic synthesis, linking barback students for presenting research purity in organic synthesis, linking barback to the previous lessons on the students for presenting research purity in organic synthesis, linking barback	reaction mechanisms, such as free		experimental accuracy and reliability.	types and their mechanisms equips
Data PresentationData Presentationinfections are controlled and the importance of using targeted therapies to prevent resistance. a propriate methods for data production of polymers.infections are controlled and the importance of using targeted therapies to prevent resistance. a propriate methods for data presentation (e.g., tables, graphs) enables Access to and Acceptance of Treatment students to communicate findings clearity. Choosing the correct format for data representation also helps ensure information is accessible to various audiences.infections are controlled and the importance of using targeted therapies to prevent resistance.Objective: To introduce students to the concepts of enhaby change, students and reactions of substances, students associated with these reactions, particularly in industrial processes.Data PresentationCommunicationWhy here? Having students ect to understand the energy changes stulkis/knowledge: Students will learn profiles, and ucontrain the energy changes atacid co diffices prime treatment students and ucontrain diffice prose betwee impurities.Solvent Extraction and Impurity RemovalProfestional Data Reporting: Learning the based research, where clear communication of results is essential.Learning Aim D: Project Review and scientific ReportingBuildino, norditions, interpret reaction profiles, and understrad the profiles, and understrad the profile pr	radical substitution in alkanes and	Distillation Techniques		students with knowledge of how
their application in processes like the production of polymers.Objectives: Cover both simple and distillation to wers.communicating Findings: Teaching appropriate methods for data presentation (e.g., tables, graphs) enables students to communicate findings clearly.importance of using targeted therapies to prevent resistance.A3: Introduction to Energy Changes in Industrial ReactionsRationale: Distillation is a fundamental separation technique in organic chemistry. Understanding the differences between simple and fortical al distillation enhances students' ability to choose appropriate methods for purfying organic liquids.Comsunication Reporting: Learning to present data accurately and thoughtfully is critical for academic and industry- based research, where clear communication of results is essential.Kationale: Exploring barriers to treatment highlights the social and economic factors affecting healthcaree, fostering averness of health equity and patient-centred care approaches.Why here? Having studied the structure and creations of substances, students associated with these reactions, particularly in industrial contexts.Objectives: Introduce solvent extraction and discuss various chemicals used to remove impurities. Rationale: Solvent extraction is crucial for isolating organic compounds. This learning firmiology: Lessons on the structure of using organic compounds. This learning leaves to the provent subles is somedial.Importance of using targeted therapies treatment accurate and scientific treatment and industryBuilding Reporting Stills: Writing a clustrial processes.Objectives: Introduce solvent extraction and discuss various back to the previous lessons on distillation.Communication of results is essentia	electrophilic addition in alkenes, and		Data Presentation	infections are controlled and the
cracking of hydrocarbons and the production of polymers.fractional distillation, including laboratory equipment and industrial distillation to suesr.Communicating Findings: Teaching appropriate methods for data presentation (e.g., tables, graphs) enables students to communicate findings clearly. Rationale: Distillation is a fundamental separation technique in organic chemistry. Understanding the differences between simple and fractional distillation is a fractional distillation enhances students' ability to choose appropriate methods for purifying organic liquids.Communication accessible to various audiences.Access to and Acceptance of Treatment accessible to various audiences.Why here? Having studied the structure and creations of substances, students and creations of substances, students standard conditions, interpret reaction, porfiles, and understand the energy efficiency in andrustrial contexts.Communication of results is essential.Rationale: Exploring barriers to treatment highights the social and communication of results is essential.Skills/knowledge: Students modustrial processe.Objectives: Introduce solvent extraction and discuss various trading organic compounds. This lesson not only explains the process but als oemphaszes the importance of orsiolating organic compounds. This lesson not only explains the process but als oemphaszes the importance of ormality in industrial processes.Communication of professional scientific repare students on the structure, stiel, and language of scientific reports prares students the tommutation of profes	their application in processes like the	Objectives : Cover both simple and		importance of using targeted therapies
production of polymers.laboratory equipment and industrial distillation towers.appropriate methods for data presentation (e.g., tables, graphs) enables students to communicate findings clearly. Choosing the correct format for data representation also helps ensure information is accessible to various addiences.Access to and Acceptance of TreatmentObjective: To introduce students to the concepts of enthalpy change, standard endothermic reactions, and reactions of substances, students students addiences.Professional Data Reporting: Learning to present data accurately and thoughtfully tractical disturbs ereactions addiences.Rationale: Exploring barriers to treatment highlights the social and economic factors affecting healthcare, fostering awareness of health equity and patient-centred care approaches.Why here? Having studied the structure and reactions of substances, students sociated with these reactions, particularly in industrial contexts.Objectives: Introduce solvent extraction and discuss various for isolating organic compounds. This lesson not only explains the process but also emphasized the implay the isolation.RemovalRearing Aim D: Project Review and Scientific ReportingLearning Aim D: Understanding the Body's Response to Diseases and InfectionsSoluctive: To tack students how to measure and calculate enthalpy Changes and their industrial processes.Soluctive: Students the previous lessons on distillation.Report Structure and Scientific Terminology, past tense, and third-person praper students for presenting research formally. Emphasizing correct terminology, past tense, and atcurate renor with enting the previous lessons on distillation.Report Structure and Scientific Terminology, p	cracking of hydrocarbons and the	fractional distillation, including	Communicating Findings: Teaching	to prevent resistance.
A3: Introduction to Energy Changes in A3: Introduction to Energy Changes in Industrial Reactionsdistillation towers.presentation (e.g., tables, graphs) enables students to communicate findings clearly. Choosing the correct format for data representation also helps ensure information is accessible to various adiences.Access to and Acceptance of Treatment students of data representation also helps ensure information is accessible to various adiences.Access to and Acceptance of Treatment students' ability are discussed, as well as adverse reactions adiences.Why here? Having studied the structure and reactions of substances, students and reactions of substances, students associated with these reactions, particularly in industrial contexts.Solvent Extraction and Impurity RemovalProfessional Data Reporting: Learning to present data accurately and thoughtfully is critical for academic and industry- based research, where clear communication of results is essential. ad patient-centred care approaches.Rationale: Solvent Extraction and inpurity extraction and discuss various chemicals used to remove impurities.Rationale: Solvent extraction is crucial for isolating organic compounds. This lesson not only explains the process but also emphasizes the importance of their industrial RelevanceNon-Specific Défense Mechanisms infections9. Calculating Enthalpy Changes and their industrial RelevanceSynthesis of Organic Compounds. This lesson not only explains the process but also emphasizes the importance of toris of students, whithesi pack to the previous lessons on distiliation.Report Structure and Scientific terminology. Lessons on the structure, terminology. Lesson son the structure, toreal adjuting prepare students for pr	production of polymers.	laboratory equipment and industrial	appropriate methods for data	
A3: Introduction to Energy Changes in Industrial ReactionsRationale: Distillation is a fundamental separation technique in organic chemistry. Understanding the adiences.students to communicate findings clearly. Choosing the correct format for data representation also helps ensure information is accessible to various audiences.Lesson Focus: Factors influencing treatment access, such as stigma, cultural beliefs, and accessibility, are discussed, as well as adverse reactions and contraindications.Why here? Having studied the structure and reactions of substances, students sociated with these reactions, particularly in industrial contexts.Professional Data Reporting: Learning the present data accurately and thoughtfully is critical for academic and industry- based research, where clear communication of results is essential.Rationale: Exploring barriers to treatment highlights the social and economic factors affecting healthcare, fostering awareness of health equity and patient-centred care approaches.Skills/knowledge: Students will learn to acludate enthalpy changes under standard conditions, interpret reaction industrial processes.Objectives: Introduce solvent ectraction and discuss various for isolating organic compounds. This lesson not only explains the process but also emphasizes the importance of purity in organic synthesis, linking back to the previous lessons on purity in organic synthesis, linking back to the previous lessons on purity in organic synthesis, linking back to the previous lessons on distillation.Report Structure and Scientific Terminology, past tense, and thic previo treatment the ody's immediate defences, including physical barriers (skin), chemicals used to the previous lessons on the insolution organic synthesis		distillation towers.	presentation (e.g., tables, graphs) enables	Access to and Acceptance of Treatment
Industrial ReactionsRationale: Distillation is a fundamental separation technique in fundamental separation technique in fundamen	A3: Introduction to Energy Changes in		students to communicate findings clearly.	
Objective: To introduce students to the concepts of enthalpy change, standard conditions, and exothermic and endothermic reactions.fundamental separation technique in organic chemistry. Understanding the differences between simple and fractional distillation enhances students' ability to choose appropriate methods for purifying organic liquids.representation also helps ensure information is accessible to various audiences.treatment access, such as stigma, cultural beliefs, and accessibility, are discussed, as well as adverse reactions and contraindications.Why here? Having studied the structure and reactions of substances, students associated with these reactions, particularly in industrial contexts.Solvent Extraction and Impurity RemovalProfessional Data Reporting: Learning to present data accurately and thoughtfully is critical for academic and industry- based research, where clear communication of results is essential.Rationale: Exploring barriers to treatment highlights the social and economic factors affecting health care, fostering awareness of health equity and patient-centred care approaches.Skills/knowledge: Students will learn to andurezed of energy efficiency in industrial processes.Objectives: Introduce solvent extraction and discuss various chemicals used to remove impurities.Report Structure and Scientific Terminology: Lessons on the structure, style, and language of scientific reports prepare students for presenting research formation is grucial istillation.Non-Specific Defense MechanismsProfessional Scientific repares students how to measure and calculate enthalpy changes using specific heat capacity, whenesing specific heat capacity, of ethyl ethanoate or 3-methylbut-1-v of ethyl ethanoate	Industrial Reactions	Rationale: Distillation is a	Choosing the correct format for data	Lesson Focus: Factors influencing
Objective: To introduce students to the concepts of enthalpy change, standard and othermic reactions.organic chemistry. Understanding the differences between simple and fractional distillation enhances students' ability to choose appropriate methods for purifying organic liquids.information is accessible to various audiences.cultural beliefs, and accessibility, are discussed, as well as adverse reactions and contraindications.Why here? Having studied the structure and reactions of substances, students' absociated with these reactions, particularly in industrial contexts.Solvent Extraction and Impurity RemovalProfessional Data Reporting: Learning to present data accurately and thoughtfully is critical for academic and industry- based research, where clear communication of results is essential.Rationale: Exploring barriers to treatment highlights the social and economic factors affecting healthcare, fostering awareness of health equity and patient-centred care approaches.Skills/knowledge: Students will learn to rofiles, and understand the importance of energy efficiency in molustrial processes.Objectives: Introduce solvent extraction and discuss various chemicals used to remove impurities.Learning Aim D: Project Review and Scientific Report WritingLearning Aim D: Understanding the Body's Response to Diseases and InfectionsB. Calculating Enthalpy Changes and heir Industrial Processes.Suthesis of Organic CompoundsTreiminology; Leasons on the structure, of uty in organic synthesis, linking back to the previous lessons on distillation.Report Structure and Scientific Terminology; Leason ad third-person language teaches students the conventions of professional scientific writig.Non-Specific		fundamental separation technique in	representation also helps ensure	treatment access, such as stigma,
concepts of enthalpy change, standard conditions, and exothermic rad endothermic reactions.differences between simple and fractional distillation enhances students' ability to choose appropriate methods for purifying organic liquids.audiences.discussed, as well as adverse reactions and and contraindications.Why here? Having studied the structure and reactions of substances, students associated with these reactions, particularly in industrial contexts.Solvent Extraction and Impurity RemovalProfessional Data Reporting: Learning Aim present data accurately and thoughtfull is critical for academic and industry- based research, where clear communication of results is essential.Rationale: Exploring barriers to treatment highlights the social and economic factors affecting healthcare, communication of results is essential.Skills/knowledge: Students will learn tacalculate enthalpy changes under standard conditions, interpret reaction profiles, and understand the mportance of energy efficiency in industrial processes.Objectives: Introduce solvent extraction and discuss various chemicals used to remove impurities.Learning Aim D: Project Review and Scientific Report WritingLearning Aim D: Droject Review and Scientific reports tyle, and language of scientific reports pury in organic synthesis, linking back to the previous lessons on distillation.Report Structure and Scientific Terminology: Lessons on the structure, style, and language of scientific reports pare students for presenting research formally. Emphasizing correct terminology, past tense, and third-person language teaches students the conventions of professional scientific terminology, past tense, and third-person language teaches students the conventions of professio	Objective: To introduce students to the	organic chemistry. Understanding the	information is accessible to various	cultural beliefs, and accessibility, are
conditions, and exothermic and endothermic reactions.fractional distillation enhances students' ability to choose appropriate methods for purifying organic liquids.Professional Data Reporting: Learning to present data accurately and thoughtfully is critical for academic and industry- based research, where clear communication of results is essential.and contraindications.Why here? Having studied the structure and reactions of substances, students sociated with these reactions, particularly in industrial contexts.Solvent Extraction and Impurity RemovalProfessional Data Reporting: Learning to prosent data accurately and thoughtfully is critical for academic and industry- based research, where clear communication of results is essential.Rationale: Exploring barriers to treatment highlights the social and economic factors affecting healthcare, fostering awareness of health equity and patient-centred care approaches.Skills/knowledge: Students will learn to calculate enthalpy changes under standard conditions, interpret reaction profiles, and understand the importance of energy efficity in industrial processes.Rationale: Solvent extraction is crucial for isolating organic compounds. This lesson not only explains the process but also emphasizes the importance of purity in organic synthesis, linking back to the previous lessons on distillation.Report Structure and Scientific treminology. Lessons on the structure, prepare students for presenting research formally. Emphasizing correct terminology, past tense, and third-person language teaches students the conventions of professional scientific writing.Non-Specific Defense MechanismsBuilding Reporting Skills: Writing a clear the industrial RelevanceSynthesis of Organ	concepts of enthalpy change, standard	differences between simple and	audiences.	discussed, as well as adverse reactions
endothermic reactions.students' ability to choose appropriate methods for purifying organic liquids.Professional Data Reporting: Learning to present data accurately and thoughtfully is critical for academic and industry- based research, where clear communication of results is essential.Rationale: Exploring barriers to treatment highlights the social and economic factors affecting healthcare, fostering awareness of health equity and patient-centred care approaches.Skills/knowledge: Students will learn to calculate enthalpy changes under standard conditions, interpret reaction profiles, and understand the importance of energy efficiency in industrial processes.Noise emproaches.Learning Aim D: Project Review and Scientific ReportingLearning Aim D: Understanding the Body's Response to Diseases and Infections0. Calculating Enthalpy Changes and reserver.Rationale: Solvent extraction is crucial for isolating organic compounds. This lesson not only explains the process back to the previous lessons on distillation.Report Structure and Scientific Terminology: Lessons on the structure, style, and language of scientific reports including physical barriers (skin), chemicals sudents the privin organic synthesis, linking back to the previous lessons on distillation.Non-Specific Défense Mechanisms0. Dipective: To teach students how to measure and calculate enthalpy changes using specific heat capacity,Synthesis of Organic CompoundsBuilding Reporting Skills: Writing a clear, concise, and accurate report withNon-Specific defences form the first line of immunity; understand the enderses.	conditions, and exothermic and	fractional distillation enhances		and contraindications.
Why here? Having studied the structure and reactions of substances, students heed to understand the energy changes associated with these reactions, particularly in industrial contexts.Solvent Extraction and Impurity Removalpresent data accurately and thoughtfully is critical for academic and industry- based research, where clear communication of results is essential.Rationale: Exploring barriers to treatment highlights the social and economic factors affecting healthcare, fostering awareness of health equity and patient-centred care approaches.Skills/knowledge: Students will learn to calculate enthalpy changes under standard conditions, interpret reaction profiles, and understand the leasen not only explains the process but also emphasizes the importance of purity in organic synthesis, linking back to the previous lessons on distillation.Report Structure and Scientific Terminology: Lessons on the structure, style, and language of scientific reports prepare students for presenting research onventions of professional scientific terminology, past tense, and third-person language teaches students the conventions of professional scientific terminology, past tense, and third-person language teaches students the conventions of professional scientific envirting.Non-Specific defences form the first line of immunity; oherical barriers (stomach acid), and phagocytosis.Objective: To teach students how to measure and calculate enthalpy changes using specific heat capacity,Synthesis of Organic Compounds of ethyl ethanoate or 3-methylbut-1-vBuilding Reporting Skills: Writing a clear, conventions of professional scientific terminology is and calcurate report withObjective: To teach students how to measure and calculate enthalpy changes	endothermic reactions.	students' ability to choose appropriate	Professional Data Reporting: Learning to	
Why here? Having studied the structure and reactions of substances, students need to understand the energy changes associated with these reactions, particularly in industrial contexts.Solvent Extraction and Impurity Removalis critical for academic and industry- based research, where clear communication of results is essential.treatment highlights the social and economic factors affecting healthcare, fostering awareness of health equity and patient-centred care approaches.Skills/knowledge: Students will learn to calculate enthalpy changes under standard conditions, interpret reaction profiles, and understand the industrial processes.Objectives: Introduce solvent extraction and discuss various chemicals used to remove impurities.Learning Aim D: Project Review and Scientific Report WritingLearning Aim D: Understanding the Body's Response to Diseases and Infections8. Calculating Enthalpy Changes and Their Industrial RelevanceRationale: Solvent extraction is crucial for isolating organic compoundsReport Structure and Scientific Terminology: Lessons on the structure, style, and language of scientific reports purity in organic synthesis, linking back to the previous lessons on distillation.Non-Specific Défense MechanismsDejective: To teach students how to measure and calculate enthalpy changes using specific heat capacity,Synthesis of Organic CompoundsNorspecific defences form the first line of immunity; understanding them is crucial for or cise, and accurate report withBuilding Reporting Skills: Writing a clear, toncise, and accurate report withRationale is crucial for concise, and accurate report with		methods for purifying organic liquids.	present data accurately and thoughtfully	Rationale: Exploring barriers to
and reactions of substances, students need to understand the energy changes associated with these reactions, particularly in industrial contexts.Solvent Extraction and Impurity Removalbased research, where clear communication of results is essential.economic factors affecting healthcare, fostering awareness of health equity and patient-centred care approaches.Skills/knowledge: Students will learn to calculate enthalpy changes under standard conditions, interpret reaction profiles, and understand the importance of energy efficiency in industrial processes.Solvent Extraction and Impurity Removalbased research, where clear communication of results is essential.economic factors affecting healthcare, fostering awareness of health equity and patient-centred care approaches.Skills/knowledge: Students will learn to calculate enthalpy changes under standard conditions, interpret reaction profiles, and understand the importance of energy efficiency in industrial processes.Solvent extraction is crucial for isolating organic compounds. This lesson not only explains the process but also emphasizes the importance of purity in organic synthesis, linking back to the previous lessons on distillation.Report Structure and Scientific Terminology: Lessons on the structure, style, and language of scientific reports prepare students for presenting research formally. Emphasizing correct terminology, past tense, and third-person language teaches students the conventions of professional scientific writing.Non-Specific Défense MechanismsDisectives: To teach students how to measure and calculate enthalpy changes using specific heat capacity,Synthesis of Organic Compounds of ethyl ethanoate or 3-methylbut-1-vlBuilding Report	Why here? Having studied the structure		is critical for academic and industry-	treatment highlights the social and
need to understand the energy changes associated with these reactions, particularly in industrial contexts.Removalcommunication of results is essential.fostering awareness of health equity and patient-centred care approaches.Objectives: Introduce solvent extraction and discuss various chemicals used to remove impurities.communication of results is essential.fostering awareness of health equity and patient-centred care approaches.Skills/knowledge: Students will learn to calculate enthalpy changes under standard conditions, interpret reaction profiles, and understand the importance of energy efficiency in industrial processes.Rationale: Solvent extraction is crucial for isolating organic compounds. This but also emphasizes the importance of purity in organic synthesis, linking back to the previous lessons on distillation.Report Structure and Scientific Terminology: Lessons on the structure, style, and language of scientific reports prepare students for presenting research formally. Emphasizing correct terminology, past tense, and third-person language teaches students the conventions of professional scientific writing.Learning Aim D: Understanding the Body's Response to Diseases and InfectionsObjective: To teach students how to measure and calculate enthalpy changes using specific heat capacity,Synthesis of Organic CompoundsReporting Skills: Writing a clear, vriting.Learning Aim D: Understanding the Body's Response to Diseases and InfectionsObjective: To teach students how to measure and calculate enthalpy changes using specific heat capacity,Synthesis of Organic CompoundsReporting Skills: Writing a clear, vriting.Rationale: Non-specific defences form the first line	and reactions of substances, students	Solvent Extraction and Impurity	based research, where clear	economic factors affecting healthcare,
associated with these reactions, particularly in industrial contexts. Objectives: Introduce solvent extraction and discuss various chemicals used to remove impurities. Skills/knowledge: Students will learn to calculate enthalpy changes under standard conditions, interpret reaction profiles, and understand the importance of energy efficiency in industrial processes. B. Calculating Enthalpy Changes and Their Industrial Relevance Objective: To teach students how to measure and calculate enthalpy changes using specific heat capacity, Sumedistic Reports Compounds Synthesis of Organic Compounds Coljectives: Examine the manufacture of ethyl ethanoate or 3-methylbut-1-yl Building Reporting Skills: Writing a clear, concise , and accurate report with	need to understand the energy changes	Removal	communication of results is essential.	fostering awareness of health equity
particularly in industrial contexts.Objectives: Introduce solvent extraction and discuss various chemicals used to remove impurities.Learning Aim D: Project Review and Scientific ReportingLearning Aim D: Understanding the Body's Response to Diseases and InfectionsSkills/knowledge: Students will learn to calculate enthalpy changes under standard conditions, interpret reaction profiles, and understand the importance of energy efficiency in industrial processes.Rationale: Solvent extraction is crucial for isolating organic compounds. This lesson not only explains the process purity in organic synthesis, linking back to the previous lessons on distillation.Report Structure and Scientific Terminology: Lessons on the structure, style, and language of scientific reports prepare students for presenting research formally. Emphasizing correct terminology, past tense, and third-person language teaches students the conventions of professional scientific writing.Learning Aim D: Understanding the Body's Response to Diseases and InfectionsObjective: To teach students how to measure and calculate enthalpy changes using specific heat capacity,Synthesis of Organic Compounds Objectives: Examine the manufacture of ethyl ethanoate or 3-methylbut-1-iylBuilding Reporting Skills: Writing a clear, concise, and accurate report withRationale clear concise, and accurate report with	associated with these reactions,			and patient-centred care approaches.
Skills/knowledge: Students will learn to calculate enthalpy changes under standard conditions, interpret reaction profiles, and understand the importance of energy efficiency in industrial processes.extraction and discuss various chemicals used to remove impurities.Scientific Report MritingLearning Aim D: Understanding the Body's Response to Diseases and Infections9. Calculating Enthalpy Changes and Their Industrial RelevanceFationale: Solvent extraction is crucial for isolating organic compounds. This lesson not only explains the process but also emphasizes the importance of back to the previous lessons on distillation.Report Structure and Scientific Terminology: Lessons on the structure, style, and language of scientific reports prepare students for presenting research formally. Emphasizing correct terminology, past tense, and third-person language teaches students the conventions of professional scientific writing.Learning Aim D: Understanding the Body's Response to Diseases and Infections0bjective: To teach students how to measure and calculate enthalpy changes using specific heat capacity,Synthesis of Organic CompoundsReport Structure and Scientific reminology, past tense, and third-person language teaches students the conventions of professional scientific writing.Rationale: Non-specific defences form the first line of immunity; understanding them is crucial for understanding them is crucial for	particularly in industrial contexts.	Objectives: Introduce solvent	Learning Aim D: Project Review and	
Skills/knowledge: Students will learn to calculate enthalpy changes under standard conditions, interpret reaction profiles, and understand the importance of energy efficiency in industrial processes.Chemicals used to remove impurities.Scientific Report WritingBody's Response to Diseases and Infections9. Calculating Enthalpy Changes and Their Industrial RelevanceRationale: Solvent extraction is crucial for isolating organic compounds. This lesson not only explains the process but also emphasizes the importance of purity in organic synthesis, linking back to the previous lessons on distillation.Report Structure and Scientific Terminology: Lessons on the structure, style, and language of scientific reports prepare students for presenting research formally. Emphasizing correct terminology, past tense, and third-person language teaches students the conventions of professional scientific writing.Lesson Focus: This lesson introduces the body's immediate defences, including physical barriers (skin), chemical barriers (skin), and phagocytosis.Objective: To teach students how to measure and calculate enthalpy changes using specific heat capacity,Synthesis of Organic Compoundsobjective: Examine the manufacture of ethyl ethanoate or 3-methylbut-1-ylBuilding Reporting Skills: Writing a clear, concise, and accurate report withRationale: Non-specific defences form the first line of immunity; understanding them is crucial for	· · · ·	extraction and discuss various	Scientific Reporting	Learning Aim D: Understanding the
Calculate enthalpy changes under standard conditions, interpret reaction profiles, and understand the importance of energy efficiency in industrial processes.Rationale: Solvent extraction is crucial for isolating organic compounds. This lesson not only explains the process but also emphasizes the importance of purity in organic synthesis, linking back to the previous lessons on distillation.Scientific Report WritingInfections8. Calculating Enthalpy Changes and Their Industrial RelevanceRationale: Solvent extraction is crucial for isolating organic compounds. This lesson not only explains the process but also emphasizes the importance of purity in organic synthesis, linking back to the previous lessons on distillation.Scientific Report WritingInfections0. Dijective: To teach students how to measure and calculate enthalpy changes using specific heat capacity,Synthesis of Organic CompoundsCompounds organic compoundsConventions of professional scientific writing.Non-Specific Défense Mechanisms0. Dijective: To teach students how to measure and calculate enthalpy changes using specific heat capacity,Synthesis of Organic CompoundsConventions of professional scientific writing.Rationale: Non-specific defences form the first line of immunity; understanding them is crucial for	Skills/knowledge: Students will learn to	chemicals used to remove impurities.		Body's Response to Diseases and
Actionale: Solvent extraction is crucial profiles, and understand the importance of energy efficiency in industrial processes.Rationale: Solvent extraction is crucial for isolating organic compounds. This lesson not only explains the process but also emphasizes the importance of purity in organic synthesis, linking back to the previous lessons on distillation.Report Structure and Scientific Terminology: Lessons on the structure, style, and language of scientific reports prepare students for presenting research formally. Emphasizing correct terminology, past tense, and third-person language teaches students the conventions of professional scientific writing.Non-Specific Défense MechanismsObjective: To teach students how to measure and calculate enthalpy changes using specific heat capacity,Synthesis of Organic Compoundsreminology: Lesson son distillation.conventions of professional scientific writing.Non-Specific Défense MechanismsObjective: To teach students how to measure and calculate enthalpy changes using specific heat capacity,Synthesis of Organic Compoundsreminology: Lesson son distillation.Rationale: Non-specific defences form the first line of immunity; understand the understand the measure and calculate enthalpySolvent extraction is crucial for all processesReport Structure and Scientific terminology: Lessons on the structure, style, and language of scientific measure and calculate enthalpySolvent extraction is crucial for solvent extraction is crucial for terminology: Lesson son distillation.Report Structure and Scientific terminology: Lesson Focus: This lesson introduces the body's immediate defences, including hemis crucial forObjectives: Examine the manufac	calculate enthalov changes under		Scientific Report Writing	Infections
profiles, and understand the importance of energy efficiency in industrial processes.for isolating organic compounds. This lesson not only explains the process but also emphasizes the importance of purity in organic synthesis, linking back to the previous lessons on distillation.Report Structure and Scientific Terminology: Lessons on the structure, style, and language of scientific reports prepare students for presenting research formally. Emphasizing correct terminology, past tense, and third-person language teaches students the conventions of professional scientific writing.Non-Specific Défense MechanismsObjective: To teach students how to measure and calculate enthalpy changes using specific heat capacity,Synthesis of Organic CompoundsForminology: Lessons on the structure, style, and language of scientific terminology, past tense, and third-person language teaches students the conventions of professional scientific writing.Non-Specific Défense MechanismsObjective: To teach students how to measure and calculate enthalpy changes using specific heat capacity,Synthesis of Organic CompoundsNon-Specific Défense MechanismsObjective: Examine the manufacture of ethyl ethanoate or 3-methylbut-1-vlBuilding Reporting Skills: Writing a clear, concise, and accurate report withNon-Specific Défense form the first line of immunity; understanding them is crucial for	standard conditions, interpret reaction	Rationale : Solvent extraction is crucial		
Importance of energy efficiency in industrial processes.lesson not only explains the process but also emphasizes the importance of purity in organic synthesis, linking back to the previous lessons on distillation.Terminology: Lessons on the structure, style, and language of scientific reports prepare students for presenting research formally. Emphasizing correct terminology, past tense, and third-person language teaches students the conventions of professional scientific writing.Lesson Focus: This lesson introduces the body's immediate defences, including physical barriers (skin), chemical barriers (skin), chemical barriers (stomach acid), and phagocytosis.Objective: To teach students how to measure and calculate enthalpy changes using specific heat capacity,Synthesis of Organic CompoundsCompoundsRationale: Non-specific defences form the first line of immunity; understanding them is crucial forObjective: To teach students how to measure and calculate enthalpy changes using specific heat capacity,Objectives: Examine the manufacture of ethyl ethanoate or 3-methylbut-1-ylBuilding Reporting Skills: Writing a clear, concise, and accurate report withRationale: Non-specific defences, including them is crucial for	profiles, and understand the	for isolating organic compounds. This	Report Structure and Scientific	Non-Specific Défense Mechanisms
Industrial processes.Industrial processes.Industrial state processesIndustrial state processesIndustrial state processesIndustrial state processes9. Calculating Enthalpy Changes and Their Industrial Relevancebut also emphasizes the importance of purity in organic synthesis, linking back to the previous lessons on distillation.style, and language of scientific reports prepare students for presenting research formally. Emphasizing correct terminology, past tense, and third-person language teaches students the conventions of professional scientific writing.Lesson Focus: This lesson introduces the body's immediate defences, including physical barriers (skin), chemical barriers (stomach acid), and phagocytosis.Objective: To teach students how to measure and calculate enthalpy changes using specific heat capacity,Synthesis of Organic Compoundsconventions of professional scientific writing.Rationale: Non-specific defences form the first line of immunity; understanding them is crucial for	importance of energy efficiency in	lesson not only explains the process	Terminology : Lessons on the structure.	
Actional processorSurvive comprises and purity in organic synthesis, linking back to the previous lessons on distillation.Survive comprises and prepare students for presenting research formally. Emphasizing correct terminology, past tense, and third-person language teaches students the conventions of professional scientific writing.Lesson mediate defences, including physical barriers (skin), chemical barriers (stomach acid), and phagocytosis.Objective: To teach students how to measure and calculate enthalpy changes using specific heat capacity,Synthesis of Organic CompoundsSynthesis of Organic CompoundsConventions of professional scientific writing.Rationale: Non-specific defences form the first line of immunity; understanding them is crucial for	industrial processes.	but also emphasizes the importance of	style and language of scientific reports	Lesson Focus: This lesson introduces
9. Calculating Enthalpy Changes and Their Industrial Relevanceback to the previous lessons on distillation.formally. Emphasizing correct terminology, past tense, and third-person language teaches students the conventions of professional scientific writing.including physical barriers (skin), chemical barriers (stomach acid), and phagocytosis.Objective: To teach students how to measure and calculate enthalpy changes using specific heat capacity,Synthesis of Organic Compoundsconventions of professional scientific writing.Rationale: Non-specific defences form the first line of immunity; understanding them is crucial for		nurity in organic synthesis linking	prenare students for presenting research	the body's immediate defences
Their Industrial RelevanceSource of the previous resonance of the previ	9. Calculating Enthalpy Changes and	back to the previous lessons on	formally. Emphasizing correct	including physical barriers (skin)
Objective: To teach students how to measure and calculate enthalpy changes using specific heat capacity,Synthesis of Organic CompoundsCompoundsRationale: Non-specific defences form the first line of immunity; understanding them is crucial forObjective: To teach students how to measure and calculate enthalpy changes using specific heat capacity,Synthesis of Organic CompoundsSynthesis of Organic CompoundsRationale: Non-specific defences form the first line of immunity; understanding them is crucial for	Their Industrial Relevance	distillation	terminology past tense and third-person	chemical harriers (stomach acid) and
Objective: To teach students how to measure and calculate enthalpy changes using specific heat capacity, Synthesis of Organic Compounds conventions of professional scientific writing. Rationale: Non-specific defences form the first line of immunity; understanding them is crucial for Objectives: Examine the manufacture of ethyl ethanoate or 3-methylbut-1-yl Building Reporting Skills: Writing a clear, concise, and accurate report with understanding them is crucial for			language teaches students the	nhagocytosis
measure and calculate enthalpy Objectives: Examine the manufacture writing. changes using specific heat capacity, Objectives: Examine the manufacture Building Reporting Skills: Writing a clear, of ethyl ethanoate or 3-methylbut-1-yl Building Reporting Skills: Writing a clear, understanding them is crucial for	Objective: To teach students how to	Synthesis of Organic Compounds	conventions of professional scientific	phagocytosis.
changes using specific heat capacity, of ethyl ethanoate or 3-methylbut-1-yl changes using specific heat capacity, of ethyl ethanoate or 3-methylbut-1-yl changes using specific heat capacity, of ethyl ethanoate or 3-methylbut-1-yl concise, and accurate report with	measure and calculate enthalow		writing.	Rationale: Non-specific defences form
of ethyl ethanoate or 3-methylbut-1-yl Building Reporting Skills: Writing a clear, understanding them is crucial for	changes using specific heat capacity	Objectives : Examine the manufacture		the first line of immunity.
concise, and accurate report with	enanges asing specific field capacity,	of ethyl ethanoate or 3-methylbut-1-yl	Building Reporting Skills: Writing a clear	understanding them is crucial for
			concise, and accurate report with	

heat transfer equations, and data from	ethanoate, comparing laboratory and	references is crucial for academic	knowing how the body protects itself
industrial processes.	industrial scales.	integrity and scientific communication.	from initial pathogen invasions.
•			
Why now? After understanding the	Rationale: This hands-on approach	Scientific Evaluation of Findings	Specific defence Mechanisms – Cell-
theoretical concepts of energy changes,	solidifies understanding of the		Mediated and Humoral Responses
students need to apply this knowledge	discussed techniques. By applying	Evaluating Research Outcomes: Lessons	
in practical calculations that are	knowledge to real-world examples,	on evaluating findings, limitations, and	Lesson Focus: Differentiates between
relevant to industrial applications.	students gain insight into both	hypothesis assessment help students	cell-mediated (T-lymphocytes) and
	laboratory practices and industrial	critically review their work, identify areas	humoral responses (B-lymphocytes),
Skills/knowledge: Students will learn to	applications.	for improvement, and suggest further	highlighting how the body targets
use the equation $Q=mc\Delta tQ = mc Delta$		research. This encourages reflection and	specific pathogens.
tQ=mc∆t to calculate heat changes in	Introduction to Testing Methods	continuous improvement in scientific	
reactions, relate these calculations to		practice.	Rationale: Knowing the differences
industrial energy needs, and analyze	Objectives : Shift focus to testing		between immune responses and how
data from real-world processes.	methods for assessing purity, starting	Developing Critical Thinking: Learning to	they combat pathogens is foundational
	with boiling point measurement.	evaluate results and processes promotes	for understanding immunology,
Review and Synthesis: Properties ,		scientific rigor and prepares students to	vaccination, and autoimmune
Reactions, and Energy Changes in	Rationale: Understanding how to	assess research outcomes objectively.	conditions.
Industry (A1, A2, A3)	assess the purity of organic		
	compounds is essential. This lesson	Skill Development and Reflection	The Immune Response and Memory
Objective: To review the properties and	bridges manufacturing techniques		Cells
uses of substances, focusing on how	with quality control, highlighting the	Project and Skill Reflection: Lessons on	
chemical and physical properties,	significance of boiling point in	reflecting on skill development, such as	Lesson Focus: Focuses on memory cells
reactions, and energy changes	characterizing organic liquids.	time management, safe practices, and	and secondary immune responses,
interrelate in industrial contexts.		communication, foster self-awareness.	illustrating how the body remembers
	Infrared Spectroscopy	Emphasizing initiative, judgment, and	pathogens for faster future responses.
Why now? This final lesson synthesizes		resourcefulness helps students assess	
all previous content, allowing students	Objectives : Explore infrared	their strengths and areas for future	Rationale: This concept is essential for
to connect their knowledge of chemical	spectroscopy, including how to	growth.	grasping long-term immunity and the
properties, organic reactions, and	compare spectra with pure samples.		principles of booster vaccinations.
energy changes in industrial		Building Independent Research Skills:	
applications.	Rationale: Infrared spectroscopy is a	Reflecting on project work develops	Summary: This sequence of lessons
	powerful tool in organic chemistry. By	students' ability to learn from	progressively builds from understanding
Skills/knowledge: Students will apply	teaching students how to interpret IR	experiences, improving their confidence	different diseases and pathogens to
their knowledge in a comprehensive	spectra, this lesson enhances their	and preparedness for future scientific	examining the immune response. This
review, integrating their understanding	analytical skills and reinforces the	challenges.	structured approach equips students
of the industrial production, use, and	importance of purity assessment.		with a comprehensive understanding of
energy changes of both inorganic and		Summary: The sequence progresses from	disease mechanisms, transmission,
organic substances.	Advanced Testing Methods	foundational research and proposal	prevention, and the body's defence.
		development to planning, execution, data	These lessons foster a strong

Overall Structure and Flow:

Building Foundational Knowledge First: The sequence begins with lessons on the basic chemical properties of substances before moving to their industrial uses, ensuring that students have a strong foundation in chemical principles.

Progression from Theory to

Application: Each lesson builds on the last, moving from understanding the properties and extraction of substances to their commercial uses and energy changes in industrial contexts.

Practical Application of Knowledge: Throughout the sequence, there is a focus on industrial processes and the real-world applications of chemical principles, helping students relate their theoretical knowledge to practical and industrial contexts.

Integration of Organic and Inorganic Chemistry: The lessons cover both organic and inorganic substances, ensuring that students have a comprehensive understanding of chemistry as it relates to industry, from hydrocarbons to metal oxides.

This sequence ensures that students gain a thorough understanding of the properties and uses of substances, along with the energy changes involved in their production and application in industry, preparing them for both **Objectives**: Introduce advanced methods used in industry, including high-performance liquid chromatography (HPLC) and gas chromatography (GC).

Rationale: Providing knowledge of advanced testing techniques prepares students for real-world applications in quality control and research settings. This final lesson synthesizes previous knowledge while emphasizing modern analytical methods.

Conclusion

This structured sequence ensures that students gain a comprehensive understanding of both manufacturing techniques and testing methods for organic liquids. By progressing from fundamental concepts to specific applications and analytical techniques, students develop the knowledge and skills necessary for successful careers in chemistry and related fields. The integration of theory and practical application throughout the lessons fosters a deeper understanding of organic processes and enhances students' preparedness for future challenges in the scientific community.

Assignment C The sequence of lessons for Learning Aim C is designed to provide a thorough exploration of manufacturing techniques and testing methods for organic solids. This structured approach ensures that students gain both theoretical analysis, and review. This comprehensive structure supports students in developing independence and rigor in scientific investigation, equipping them with valuable skills for future studies or professional research environments. foundation for careers in healthcare, scientific research, or public health by focusing on both technical knowledge and social considerations.

academic assessments and practical	knowledge and practical skills
industrial challenges.	essential for understanding the
	production and characterization of
	organic solid compounds.
Biology: This sequence of lessons on	
the cardiovascular system is structured	Lesson Sequence Overview
to introduce students to essential	
anatomical and physiological concents	Introduction to Manufacturing
before progressively incorporating more	Tashniques for Solids
complex functions and real world	rechniques for Solids
complex functions and real-world	
applications. The organization	Objectives: Introduce key concepts
prioritizes foundational knowledge,	related to crystallization and
such as heart structure and function,	recrystallization, including saturated
before layering on circulatory	and supersaturated solutions.
mechanics, diagnostic tools, disease	
factors, and treatments, ensuring a	Rationale: Establishing a foundational
cohesive and comprehensive	understanding of solubility principles
understanding of cardiovascular health.	sets the stage for deeper exploration
	of crystallization techniques. This
B1: Heart Structure and Function	knowledge is crucial for later
	discussions on purification methods.
Foundation of Cardiovascular System:	
Starting with the heart's anatomy (atria,	Crystallization Techniques
ventricles, septum, valves, major blood	,
vessels) gives students a solid grounding	Objectives : Explore the processes of
in the organ at the centre of the system.	crystallization and recrystallization
Understanding these parts and their	focusing on factors that influence
functions provides essential knowledge	crystal growth and purity
needed to comprehend the entire	
cardiovascular system	Bationalo: Emphasizing the
	significance of tomporature and
Myogenic Muscle and Conduction	significance of temperature and
System: The introduction of myogenic	solvent polarity enhances students
muscle tissue and the heart's	understanding of now to achieve
conduction system (SAN AVA Bundle	optimal crystallization results. This
of Lie Durkinie fibree) fellows legisethe	lesson also connects theory with
or his, Purkinje fibres) follows logically,	practical application in purifying
as students can now relate the	organic solids.
structure of the heart to its autonomic	
contractions. This also prepares	Filtration Methods

students to later interpret the cardiac	Objectives : Cover various filtration	
cycle and ECG.	techniques, including gravity filtration,	
	hot filtration, and vacuum filtration.	
Cardiac Output Calculation: Once		
students grasp the heart's anatomy and	Rationale: Understanding different	
conduction system, calculating cardiac	filtration methods is essential for	
output offers a hands-on application,	isolating crystals from solutions. This	
bridging the structural knowledge with	lesson prepares students to select	
a practical physiological concept that	appropriate techniques based on the	
reinforces the heart's role in circulation.	specific requirements of their	
	experiments.	
Blood Vessel Structure and Function		
	Evaporation and Drying Techniques	
Characteristics and Pressure		
Differences: Introducing blood vessel	Objectives: Discuss methods for	
types and pressure changes explains	evaporation and drying, including the	
how blood circulates through different	use of desiccators and rotary	
parts of the body. Students can	evaporation.	
compare arteries, veins, and capillaries		
to understand how their structure	Rationale: Learning about these	
enables specific functions (e.g., arteries	techniques is vital for the final stages	
withstand high pressure, veins prevent	of organic solid preparation. Students	
backflow with valves).	gain insight into how to effectively	
	remove solvents while preserving the	
Linking with Heart Function: This	integrity of the product.	
knowledge helps students appreciate		
the interdependent nature of the	Industrial Manufacturing Techniques	
cardiovascular system, as blood vessels		
work alongside the heart to maintain	Objectives: Introduce advanced	
homeostasis and efficient blood flow.	manufacturing methods like spray	
	drying and freeze drying, along with	
Cardiac Cycle	the use of filter presses.	
Systole, Diastole, and Blood Flow:	Rationale: Expanding knowledge to	
covering the cardiac cycle next (atrial	industrial-scale techniques helps	
systole, ventricular systole, cardiac	students understand how laboratory	
diastole) neips students understand the	principles are applied in real-world	
rnythinic nature of neartbeats. Learning	production. This prepares them for	
the roles of major vessels and the	careers in industrial settings.	
unning of valve openings and closings		

reinforces how the heart maintains	Synthesis of Aspirin or Paracetamol	
unidirectional blood flow.		
	Objectives : Explore the laboratory and	
Integrating Concepts: This segment	industrial-scale manufacture of	
integrates previous lessons on heart	common organic solids like aspirin or	
structure, valve function, and vessel	paracetamol.	
characteristics, supporting students in		
grasping the cycle's effect on blood	Rationale: Applying theoretical	
pressure and cardiac output.	concepts to the synthesis of well-	
	known compounds helps students	
Electrocardiograms (ECG)	connect their learning to practical	
	applications. This lesson also	
ECG Interpretation: With the cardiac	emphasizes the importance of quality	
cycle as background, students can now	control throughout the manufacturing	
analyze ECG traces, learning the	process.	
significance of PQRST points and		
identifying different arrhythmias (e.g.,	Estimation of Purity	
tachycardia, bradycardia). This real-		
world diagnostic skill allows them to	Objectives : Discuss methods for	
connect their theoretical knowledge	assessing purity, starting with the	
with clinical applications.	appearance of crystals, and moving to	
	melting point measurements.	
Relevance to Disease: Learning to		
interpret arrhythmias introduces the	Rationale: Understanding purity	
importance of diagnostics in preventing	assessment is crucial for evaluating	
and managing cardiovascular disease	the quality of synthesized compounds.	
(CVD), setting up the rationale for later	This lesson provides foundational skills	
discussions on CVD risk factors and	for later analytical techniques.	
treatments.		
	Melting Point Analysis	
Risk Factors for Cardiovascular Disease		
	Objectives : Cover techniques for	
Understanding Risk Factors: Now that	measuring melting points, including	
students have an understanding of	simple cooling curves and mixed-	
normal cardiovascular function,	melting-point techniques.	
discussing factors like genetics, age,		
diet, high blood pressure, and lifestyle	Rationale: Melting point	
introduces CVD risk factors. This builds	determination is a key indicator of	
awareness of preventive health	purity. By learning about various	
	methods and their reliability, students	

measures and how lifestyle choices	gain practical skills relevant to their	
impact cardiovascular health.	future work in chemistry.	
Contextual Application: Examining CVD	Thin-Layer Chromatography (TLC) and	
risk factors contextualizes the	Other Analytical Methods	
cardiovascular system in daily life,		
enhancing the relevance of lessons and	Objectives : Introduce thin-layer	
fostering a more holistic understanding	chromatography as a method for	
of heart health.	purity assessment, along with infrared	
	spectroscopy.	
Practical Investigation: Effect of		
Caffeine on Heart Rate in Daphnia	Rationale: These analytical techniques	
	are widely used in both academic and	
Hands-On Experimentation:	industrial settings. Providing	
Investigating caffeine's effect on heart	knowledge on TLC and IR spectroscopy	
rate in Daphnia provides an interactive	equips students with essential skills	
way to study physiological responses	for characterizing organic solids.	
and reinforces the importance of the		
cardiovascular system's adaptability.	Conclusion	
This experiment also develops students'		
research skills and understanding of	This carefully structured sequence	
factors influencing heart rate.	builds a comprehensive understanding	
	of manufacturing techniques and	
CVD Treatments: Benefits and Risks	testing methods for organic solids. By	
	progressing from foundational	
Treatment Options: Concluding with an	concepts to advanced techniques,	
exploration of CVD treatments	students develop a robust skill set that	
(antihypertensives, statins,	integrates theory and practical	
transplantation) connects previous	application. This approach not only	
lessons on risk factors, diagnostics, and	enhances their knowledge of organic	
prevention to therapeutic options.	solid production but also prepares	
Students can now critically evaluate the	them for successful careers in	
effectiveness and trade-offs of each	scientific and industrial fields.	
treatment, rounding out their		
understanding of the cardiovascular	Assignment D The sequence of	
system in both health and disease.	lessons for Learning Aim D is designed	
	to provide a comprehensive	
	understanding of how scientific	
	information is stored and	
	communicated within a workplace	

Summary: This sequence gradually builds from basic structure and function, enabling students to develop a deep understanding of cardiovascular physiology. By the end, students can connect anatomical knowledge with real-world implications, diagnostics, and treatment decisions, giving them a comprehensive perspective on cardiovascular health.

This sequence of lessons on the human lung and the ventilation system is structured to progress from understanding core anatomical structures to integrating functional mechanics, principles of gas exchange, diagnostic tools, and the effects of physiological demands, such as exercise, on respiratory function. Here's the rationale for each part of the sequence:

B2: Structure of the Human Lung and Ventilation System

Foundational Knowledge: Beginning with the structure of the lung (trachea, bronchi, bronchioles, alveoli, capillary network) gives students a foundation in anatomy that is essential for understanding how air moves through the respiratory system and where gas exchange occurs.

Supporting Structures: The intercostal muscles, diaphragm, and pleural membranes are then introduced to show how these structures support breathing mechanics. Students can

laboratory. This structured approach ensures that students grasp both the theoretical and practical aspects of laboratory information management, enhancing their ability to operate effectively in scientific environments.

Lesson Sequence Overview

Introduction to Laboratory Information Management

Objectives: Introduce the concept of traceability in laboratory settings, including the use of signatures or unique computer logins.

Rationale: Understanding traceability is fundamental for ensuring accountability and integrity in laboratory work. This lesson establishes a foundation for the importance of accurate recordkeeping.

Records Associated with Laboratory Work

Objectives: Explore the various records associated with laboratory activities, including sample booking, unique identification numbers, analysis records, and reporting formats.

Rationale: This lesson highlights the critical role of documentation in maintaining quality and compliance in laboratory settings. It emphasizes how

connect each structure's role in maintaining the overall integrity and function of the lungs, setting the stage for understanding ventilation.

Interconnected Components: This section also emphasizes the close relationship between the lung's structures, like the proximity of alveoli to capillaries, which becomes essential when discussing gas exchange efficiency.

Mechanics of Ventilation

Inspiration and Expiration Processes: Moving to ventilation mechanics next (inspiration, expiration, action of intercostal muscles, and diaphragm) allows students to apply their structural knowledge to dynamic breathing processes. Understanding changes in thoracic volume and air pressure introduces core concepts in respiratory physiology, such as how air moves into and out of the lungs.

Assisted Breathing: Introducing the use of ventilators at this stage links physiology to medical applications, enabling students to see how respiratory support works in cases where natural breathing is compromised.

Principles of Efficient Gas Exchange

Adaptations for Gas Exchange: Discussing principles of gas exchange in the alveoli (large surface area, moisture, thorough record-keeping contributes to effective data management.

Laboratory Information Management Systems (LIMS)

Objectives: Introduce LIMS and its role in managing laboratory data efficiently.

Rationale: LIMS is a vital tool for modern laboratories. Understanding its functionalities helps students appreciate the integration of technology in data management and its impact on laboratory operations.

Types of Information in Scientific Organizations

Objectives: Discuss the various types of information used in scientific organizations, such as customer and product details, manufacturing data, and standard operating procedures.

Rationale: This lesson provides an overview of the breadth of information that needs to be managed in a scientific setting, highlighting the interconnectedness of different data types in laboratory operations.

Communication Channels in Scientific Organizations

Objectives: Explore the channels of communication within and outside the

thin capillary walls, and diffusion gradients) builds on students' structural knowledge and demonstrates how anatomy is optimized for function. This section also underscores the importance of gas exchange in maintaining oxygen supply for cellular respiration and ATP production.

Biological Relevance: Understanding gas exchange efficiency connects lung function to cellular processes, giving students a systems-level view of respiration that is foundational for understanding how oxygen and carbon dioxide are managed in the body.

Spirometer Readings and Lung Volumes

Measuring Lung Function: After exploring how gas exchange occurs, introducing spirometer readings and lung volumes (tidal volume, inspiratory reserve, residual volume, etc.) allows students to quantify lung function. This links structure and function with practical measurements, reinforcing concepts of lung capacity and the role of different lung volumes.

Application to Respiratory Health:

Understanding lung volumes prepares students for more in-depth discussions of respiratory health and helps them see how lung capacity reflects lung health and efficiency. organization, including intranets, emails, and reports.

Rationale: Effective communication is crucial in scientific organizations. This lesson emphasizes the importance of clear communication for collaboration, compliance, and sharing of research findings.

Introduction to Informatics in Science

Objectives: Introduce the concept of informatics and its application in storing and retrieving scientific information.

Rationale: Understanding the role of informatics is essential in today's datadriven scientific landscape. This lesson sets the stage for discussions on large databases and their uses.

Examples of Scientific Data in Large Databases

Objectives: Explore specific examples of data stored in large databases, such as DNA sequencing and healthcare records.

Rationale: This lesson illustrates the practical applications of informatics in various scientific fields. By examining real-world examples, students can see the relevance of data management in advancing scientific knowledge.

weasurement wethous for Respiratory Uses of information from Large
Conditions Databases
Diagnostic Tools: Moving to diagnostic Objectives: Discuss the applications of
methods (peak expiratory flow, forced information retrieved from large
vital capacity) shows students how databases, including personalized
respiratory conditions are assessed. healthcare and genetic engineering.
These tools are essential for detecting
and managing conditions like asthma Rationale : Highlighting practical uses
and chronic obstructive pulmonary of data demonstrates its impact on
disease (COPD). society and research. This lesson
reinforces the importance of effective
Linking Diagnostics with Anatomy and data management in achieving
Physiology: This section integrates scientific advancements.
anatomical and physiological knowledge
with real-world applications, as Advantages and Issues of Data
students can see how various Management
measurements provide insights into
lung function and potential Objectives : Explore the benefits of
impairments. large-scale data storage and retrieval,
as well as ethical considerations and
Effects of Exercise on Respiratory confidentiality issues.
Parameters
Rationale: Understanding both the
Exercise Physiology : Concluding with advantages and challenges of data
the effects of exercise on respiratory management prepares students for
parameters (tidal volume, breathing real-world scenarios where ethical
rate, respiratory minute ventilation, considerations play a significant role in
oxygen consumption) allows students to scientific work.
apply their knowledge dynamically.
Examining spirometer data from
exercise experiments helps students
appreciate how the respiratory system Effective Use of Software for Data
adapts to increased demand, enhancing Management
understanding of respiratory efficiency
and endurance. Objectives : Emphasize the need to use
appropriate software effectively for
Real-World Application and System managing scientific data.
Interconnectedness: This final section
reinforces the interconnected nature of

the respiratory and muscular systems and highlights how respiration adapts to meet energy demands during physical activity, bringing full circle the relationship between respiratory anatomy, physiology, and overall body function.

Summary: This sequence gradually builds from understanding respiratory structures and breathing mechanics to the physiological principles that enable gas exchange, measuring lung volumes, and applying diagnostics. The final emphasis on exercise provides a realworld application of these concepts, allowing students to appreciate the dynamic nature of respiratory function and its role in supporting overall health and physical performance.

B3: The sequence of lessons on the urinary system is designed to build a comprehensive understanding of kidney function, from basic anatomical and physiological concepts to complex regulatory mechanisms, disease states, and treatments. By beginning with foundational concepts and progressively layering in detailed functions and clinical applications, students can develop a well-rounded understanding of renal health and disease management.

B3. Roles of the Kidney: Excretion and Osmoregulation

Foundational Functions: Starting with the roles of the kidney in excretion and

Rationale: Proficiency in relevant software tools is essential for efficient data management. This final lesson equips students with practical skills that will be vital in their future careers.

Conclusion: This structured sequence provides a comprehensive overview of how scientific information is stored and communicated in laboratory settings. By progressing from foundational concepts to practical applications and ethical considerations, students develop a robust understanding of laboratory information management. This knowledge not only prepares them for successful careers in scientific fields but also emphasizes the importance of accuracy, communication, and ethics in the responsible handling of scientific data.

osmoregulation provides essential		
background on why the kidney is vital		
for maintaining homeostasis Students		
loarn that everation (wests removal)		
learn that excretion (waste removal)		
and osmoregulation (water balance) are		
the kidney's primary functions, setting a		
strong foundation for understanding		
how these processes support overall		
health		
nealth.		
Context for Future Topics: This		
introduction frames the kidney as a		
major regulatory organ preparing		
students to appreciate the complexity		
of nephron function and hormonal		
regulation in later lessons.		
Function of the Urinary System and		
Key Structures		
Key Structures		
Introduction to System Components:		
Exploring the urinary system structures		
(ureter bladder repairery and vein)		
are video on even ious of the enotories		
provides an overview of the anatomy		
and pathways involved in urine		
formation and excretion.		
Integration with Kidney Functions: This		
antigration with Runey Functions. This		
section allows students to connect the		
kidney's internal processes to the		
broader system, seeing how urine		
formed in the kidneys is transported		
and stored before elimination.		
Structure and Eurotian of a Vidnay		
Structure and Function of a Nuney		
Nephron		
Detailed Nephron Anatomy: Diving into		
the nephron (glomerulus, Bowman's		
cancula, provimal convoluted tubula		
capsule, proximal convoluted tubule,		

loop of Henle, distal convoluted tubule,		
collecting duct) provides a close-up		
view of kidney function, as the nephron		
is the site of filtration, reabsorption,		
and secretion. Understanding nephron		
structure lays the groundwork for		
explaining ultrafiltration, selective		
reabsorption, and waste removal.		
Processes and Mechanisms: Students		
learn how specific nephron segments		
contribute to osmoregulation and waste		
removal, helping them appreciate the		
Intricacies of kidney function at the		
cellular level.		
Polo of Hormonal Pagulation:		
Discussing anti-diuratic hormona (ADH)		
and the renin-angiotensin-aldosterone		
system (RAAS) here introduces essential		
regulatory mechanisms for maintaining		
blood pressure, electrolyte, and fluid		
balance, which are central to		
understanding renal physiology.		
Kidney's Role in Water, Electrolyte,		
and Acid-Base Balances		
Core Homeostatic Functions: This		
lesson extends students' understanding		
of osmoregulation by incorporating		
electrolyte and acid-base balance.		
These concepts are crucial as they		
highlight how kidneys maintain the		
body's internal environment under		
various physiological conditions.		
Interconnected Mechanisms: Pynow		
students can understand how water		
electrolytes and nH are regulated		
	•	

simultaneously, deepening their		
appreciation for the kidney's role in		
maintaining overall physiological		
halanco		
Dalance.		
Kidney disease and Treatment		
Clinical Applications: Once students		
grasp normal kidney function,		
introducing kidney disease and		
treatments like dialysis and		
transplantation provides real-world		
relevance. Students can contrast		
healthy bids on function with immediated		
nealthy kidney function with impaired		
states and explore how medical		
interventions support kidney function in		
chronic disease.		
Treatment Rationale and		
Methodology: Understanding dialysis		
and transplantation processes allows		
students to appreciate how these		
treatments mimic or replace kidney		
functions, rounding out their knowledge		
with a facus on practical life caving		
with a focus of practical, file-saving		
applications.		
Summary: This sequence builds from		
fundamental concepts to complex		
regulatory processes, emphasizing the		
kidney's multifaceted role in		
homeostasis. By exploring both normal		
function and disease states, students		
gain a complete view of the urinarv		
system's importance in health		
preparing them for further studies in		
human physiology or healthcare fields		
numan physiology of fleathleate fields.		
D4. The converse of large are and		
в4: The sequence of lessons on cell		
transport mechanisms is designed to		

provide students with a foundational		
understanding of membrane structure		
and transport processes, progressing		
from basic concepts to more complex		
mechanisms. This structured approach		
builds a strong theoretical framework,		
enabling students to grasp the practical		
implications of cell transport in		
biological systems.		
B4: Structure of the Cell Surface		
Membrane and the Fluid Mosaic Model		
Foundation of Cell Transport: Beginning		
with the cell surface membrane's		
structure, particularly the fluid mosaic		
model, establishes a foundational		
understanding of how cell membranes		
function as selectively permeable		
barriers. Understanding this model		
(phospholipid bilayer, embedded		
proteins) is essential as it sets the stage		
for comprehending how different		
molecules are transported.		
Visualizing Membrane Dynamics: The		
fluid mosaic model also introduces the		
dynamic nature of the membrane,		
helping students appreciate how		
transport processes rely on membrane		
flexibility and the distribution of		
proteins.		
Passive Transport Mechanisms		
Diffusion and Facilitated Diffusion:		
Starting with passive transport		
(diffusion, facilitated diffusion) provides		
an intuitive approach to understanding		
how molecules move across		

membranes without energy input.		
Learning about diffusion and facilitated		
diffusion through carrier proteins and		
channels introduces students to the		
various ways cells utilize membrane		
proteins.		
- · · · · ·		
Osmosis: Introducing osmosis as a form		
of passive transport emphasizes the		
unique role of water movement across		
the membrane. Although water		
potential is not covered, students still		
gain a conceptual understanding of how		
water balance is maintained in cells.		
which is crucial for cell stability and		
for a standard of cell stability and		
function.		
Active Transport and the Role of ATP		
•		
Francisco Device devict Transmission Affra		
Energy-Dependent Transport: After		
understanding passive processes, active		
transport introduces students to		
transport that requires cellular energy		
Discussing ATD as an immediate energy		
Discussing ATP as an inimediate energy		
source clarifies how cells move		
molecules against concentration		
gradients and the significance of this		
process in maintaining cellular function		
process in maintaining central runction.		
Comparing Passive and Active		
Transport: Teaching active transport		
after passive mechanisms allows		
students to compare and contrast		
structus to compare and contrast		
energy-dependent and energy-		
independent processes, reinforcing		
their understanding of why different		
types of transport are essential for		
collular health		
cenular nealth.		

Endocytosis and Exocytosis for Large
Molecule Transport
· · /
Bulk Transport: Introducing endocvtosis
and exocytosis provides a
comprehensive understanding of how
cells manage large molecule transport.
complementing the earlier focus on
small molecule transport. Teaching
vesicle formation and movement across
the membrane highlights the cell's
ability to manage larger structures and
materials.
Application to Cellular Processes:
Endocytosis and exocytosis allow
students to explore how these
processes are integral in nutrient
uptake, waste removal, and cellular
communication, reinforcing the
membrane's role in complex cellular
interactions.
Surface Area to Volume Ratio and Its
Impact on Transport
Relating Structure to Efficiency:
Concluding with the impact of surface
area to volume ratio connects cell size
and shape to the efficiency of transport.
This lesson emphasizes why certain cell
adaptations (like microvilli) are
necessary for optimal nutrient and gas
exchange, especially in large or
specialized cells
Connecting to Multicellular Organisms
Understanding surface area to volume
ratio also helps students appreciate why
multicellular organisms have specialized

transport systems, creating a		
foundation for further study in		
should be a state of the state		
physiology.		
Summary: This sequence builds logically		
from understanding membrane		
structure to exploring various transport		
methods and their practical		
significance. By concluding with the role		
of surface area to volume ratio,		
students can appreciate the broader		
implications of transport mechanisms in		
cells and organisms, preparing them for		
more advanced tonics in cell biology		
and physiology		
and physiology.		
Physics: The sequence of lessons on		
thermal physics in domestic and		
industrial applications is structured to		
progress from foundational concepts		
and units to complex calculations and		
thermodynamic principles. This		
approach builds from basic knowledge		
approach builds from basic knowledge,		
such as units and fundamental laws, to		
applying these concepts to practical		
applications in everyday devices and		
industrial processes.		
C1: Quantities, Units, and Conversions		
Establishing Foundational Skills:		
Starting with units (nower in watts		
kilowatta menawatta gigawatta) and		
niowalls, megawalls, gigawalls) dilu		
conversions between 'C and K IS		
essential for accurate calculation and		
interpretation in thermal physics.		
Pressure units (Pascals, Nm ⁻²) introduce		
students to the measurement standards		

they will need to apply throughout the		
unit.		
Puilding Eluonov with Unite: By		
building Fluency with Onits. By		
introducing these units first, students		
gain confidence with the basic language		
gain connuclice with the busic language		
of thermal physics, preparing them to		
tackle more complex concepts with a		
solid grasp of measurement		
fundamentals.		
Key Definitions of Work Done		
Understanding Work and Energy		
Transfer: Introducing definitions of		
work done as energy transfer $(W - E_X)$		
work done as energy transfer (W = F ×		
Δx for force and distance, and W = p ×		
AV for gases) provides a foundation for		
understanding energy flow in physical		
systems. This is essential for making		
sense of processes in engines		
sense of processes in engines,		
refrigerators, and other practical		
systems.		
,		
Linking Concepts to Real-World		
Processes : Students begin to see how		
work operational pressure relate to		
work, energy, and pressure relate to		
physical and mechanical processes,		
setting the groundwork for exploring		
energy efficiency and transformations		
in subsequent lessons.		
Calculating Efficiency and Heat Engine		
Relationships		
- •		
Practical Application of Energy		
Concents: Efficiency calculations help		
etudente un dente nel su su		
students understand energy		
conservation in practical terms. By		
learning the formulas for officionsy and		
rearning the formulas for efficiency and	1	

maximum theoretical efficiency, students can appreciate the limitations of real-world systems compared to idealized models.		
Building Toward Heat Engine Principles: Introducing efficiency before covering engines gives students a basis to explore how real systems convert heat to work, including the concept of unavoidable energy losses, reinforcing the practical importance of energy efficiency in both domestic and industrial contexts.		
Thermodynamic Laws and Equations		
Core Thermodynamic Principles : Covering the conservation of energy, ideal gas law, internal energy, and the first law of thermodynamics ($Q = \Delta U +$ W) at this stage provides the backbone of thermal physics. These principles introduce the concept of energy balance and give students a framework for understanding various thermal processes.		
Ideal Gas Processes and Engine Cycles: Teaching isothermal and adiabatic processes along with idealized engine cycles (Carnot cycle) helps students grasp specific heat and energy exchange mechanisms under controlled conditions.		
Second Law of Thermodynamics and COP: Understanding the second law of thermodynamics, heat engines, refrigerators, and heat pumps at this		

point allows students to see how thermal energy is limited by entropy		
considerations, setting the foundation		
for exploring maximum theoretical		
efficiencies and limitations in energy		
transformations.		
Changes of State and Energy Transfer		
in Processes		
Linking Thermal Concepts to Practical		
Changes of State: Teaching changes of		
state and energy transfer (such as		
thermal capacity, thermal equilibrium,		
and specific heat capacity) helps		
students connect the theoretical		
aspects of thermodynamics with		
physical transformations of materials,		
such as heating, cooling, melting, and		
boiling.		
Specific Latent Heat Calculations:		
Introducing specific latent heat (AO -		
Δm) reinforces concents of energy and		
phase changes which are fundamental		
for applications like refrigeration, steam		
engines, and heat pumps.		
Summary: This sequence progresses		
from foundational quantities and		
definitions to practical applications and		
calculations, culminating in real-world		
processes that involve energy transfer,		
temperature change, and phase		
changes. By moving from basic concepts		
to practical applications in heat engines,		
refrigerators, and phase transitions, this		
sequence builds a well-rounded		
understanding of thermal physics,		
preparing students to appreciate its role		

in both every day and industrial		
processes.		
C2: The sequence of lessons on		
materials in domestic and industrial		
applications is structured to develop		
students' understanding of material		
properties, from fundamental concepts		
to practical applications in stress, strain,		
and elasticity. This progression helps		
students relate the mechanical		
properties of materials to real-world		
uses, building an understanding of how		
materials are chosen and used in		
various applications.		
C2: Introduction to Material		
Properties: Elasticity, Strength, and		
Deformation		
Basic Concepts: Starting with		
fundamental properties like elasticity,		
deformation introduces students to key		
deformation introduces students to key		
under different forces. Understanding		
elasticity and the difference between		
elastic and plastic deformation provides		
a foundation for exploring material		
response to stress.		
Real-World Relevance: By introducing		
these properties first, students gain		
insight into why materials in both		
domestic and industrial settings need to		
withstand specific types of forces and		
stress.		

Stress-Strain Curves and Material		
Behaviour		
Understanding Material Response:		
Teaching stress-strain curves elastic		
limit and other characteristics like		
creen fatigue ductility brittleness		
malleability and elastic hysteresis gives		
students a visual and quantitative		
understanding of how materials behave		
under various conditions. This provides		
a basis for analysing material suitability		
for specific applications		
for specific applications.		
Identifying Key Points on Curves		
Focusing on points like the yield point		
and elastic limit helps students		
understand thresholds where materials		
undergo permanent changes which is		
crucial when selecting materials for		
structural or mechanical applications		
structural of meenanical applications.		
Quantities Units and Definitions		
Quantities, onits, and Demittons		
Core Measurements: Introducing		
quantities like density (kg/m^3)		
tensile/compressive stress (Mm^{-2}) and		
strain alongside definitions and		
formulas gives students the tools to		
quantify material properties. These		
measurements are fundamental to		
analysing materials under force, and		
they will be applied in calculations in		
later lessons.		
Young's Modulus and Hooke's Law:		
Young's modulus, as the ratio of stress		
to strain, is critical for understanding		
stiffness and elasticity, while Hooke's		
law (F = $k\Delta x$) provides a practical		

framowork for calculating the behaviour	-	
of materials in the elastic region. These		
concents enable students to analyze		
concepts enable students to analyse		
material resistance and benaviour in		
terms of proportionality, setting the		
stage for more detailed applications.		
Calculating Material Properties and		
Energy	1	
Practical Calculations: Calculating work		
one in stretching or compressing a		
wire/spring and determining elastic		
strain energy ($\Lambda F(el) = \frac{1}{2}F\Lambda x = \frac{1}{2}k(\Lambda x)^2$)		
anables students to quantify energy in		
erms of material deformation. This		
provides a practical understanding of		
how materials absorb and release		
now materials absolutian and release		
energy, an essential factor in material		
election for applications that involve		
epeated stress, like springs and		
tructural supports.		
Application in Domestic and Industrial		
Contexts: Students can apply these		
calculations to real-world situations.		
uch as understanding why certain		
naterials are chosen for load-bearing		
tructures, shock absorbers, or products		
hat experience repeated stress cycles		
at experience repeated stress cycles.		
pplying Material Properties in		
Domestic and Industrial Applications		
· · · · · · · · · · · · · · · · · · ·		
Connecting Theory to Practice: With a		
oundation in material behaviour and		
quantitative analysis, students explore		
specific applications of materials in		
everyday and industrial contexts,		
considering how properties like		

elasticity, ductility, brittleness, and		
tensile strength affect material		
selection and performance.		
Evaluating Material Suitability: This		
stage allows students to analyse and		
make decisions based on material		
characteristics, such as why metals are		
used in construction, polymers in		
insulation, or specific alloys in		
machinery. This comprehensive		
understanding prepares students for		
further studies in materials science and		
engineering.		
Summary: The sequence progresses		
from basic concepts and characteristics		
of materials to detailed calculations and		
real-world applications. By first		
understanding material behaviour,		
followed by quantitative analysis and		
practical applications, students develop		
a robust understanding of materials'		
mechanical properties and their		
importance in domestic and industrial		
applications. This structured approach		
not only prepares students for problem-		
solving in real-life contexts but also lays		
the groundwork for advanced studies in		
engineering and material sciences.		
C3: The sequence of lessons on "Fluids		
in Motion" is structured to build		
students' understanding of fluid		
dynamics from foundational concepts		
to complex applications. This approach		
helps them apply principles of fluid		
flow, pressure, and viscosity in both		
industrial and domestic contexts,		

enabling them to understand how fluids		
behave in various systems.		
C3: Fluid Flow Patterns: Streamline and		
Turbulent Flow		
Foundation of Fluid Motion: Starting		
with streamline (laminar) and turbulent		
flow introduces students to the two		
nrimary types of fluid behaviour		
Understanding these flow natterns		
provides the base for analysing fluid		
movement in pipes air ducts and other		
flow systems		
now systems.		
Deal Marid Applications, This		
Real-world Applications: This		
knowledge neips students differentiate		
between emclent (streamined) and		
chaotic (turbulent) now, which is		
essential for applications like pipeline		
design, aerodynamics, and water		
management systems.		
Viscosity and Viscous Drag		
Understanding Fluid Resistance:		
Introducing viscosity and viscous drag		
next helps students understand how		
different fluids resist flow based on		
their internal friction. This concept is		
fundamental to analysing how fluids		
move through pipes, interact with		
surfaces, and affect the efficiency of		
mechanical systems.		
Practical Implications: Viscosity is		
critical in selecting fluids for specific		
applications, such as oils in machinery,		
hydraulic fluids, or cooling systems,		

where minimizing or maximizing flow		
resistance is desired.		
Mass Flow Rate Continuity		
Concernation of Mass in Fluids		
Teaching that the mass of fluid flow per		
second remains constant at all points		
along a nine or stream tube (continuity		
aguatian) introduces students to a key		
equation) introduces students to a key		
conservation principle in fluid dynamics.		
Understanding this concept helps		
students see how fluid sneed changes		
ithe second seco		
with cross-sectional area, which is		
essential in systems that need precise		
control of flow rates.		
Application in Flow Management: This		
principle is directly applicable in		
designing systems where consistent		
flow is critical such as water		
now is critical, such as water		
distribution networks, fuel pipelines,		
and medical devices like IV drips.		
Non Nowtonian Eluid Elow		
Non-new toman Fluid Flow		
Exploring Complex Fluids: Introducing		
non-Newtonian fluids, whose viscosity		
changes with applied stress or shear		
changes with applied stress of shedt		
rate, allows students to understand		
more complex fluid behaviours. Non-		
Newtonian fluids are common in		
various industrial applications, such as		
in the mean of a time of a state and		
in the manufacture of paints, polymers,		
and foods.		
Real-Life Relevance: Non-Newtonian		
fluids challenge the traditional		
assumptions of fluid dynamics,		
preparing students to analyse systems		

	-	-
where fluid behaviour may not follow		
conventional patterns which is crucial		
in industries dealing with specialized		
in muustries dealing with specialized		
materials.		
Rate of Fluid Flow and Pressure		
Linking Flow Poto to Prossure:		
LINKING FIOW Rate to Flessure.		
introducing the relationship between		
fluid flow rate and pressure reinforces		
students' understanding of how		
pressure influences flow speed. This		
relationship is essential in pumps, air		
conditioners, and even blood flow		
within the human body		
within the numarioody.		
Control and Davies of Flow Contained		
Control and Design of Flow Systems:		
Understanding how to manage flow		
rate by adjusting pressure allows		
students to appreciate the design of		
systems that require controlled flow,		
such as in irrigation systems, hydraulic		
lifts, and ventilation systems.		
,		
Bornoulli's Principlo		
Bernoulli's Principle		
Energy Conservation in Fluids:		
Bernoulli's principle, which relates the		
speed of fluid flow to pressure and		
height, ties together many of the		
previous concepts. This principle allows		
students to understand energy		
distribution in fluid systems, which is		
vital for analysing how fluids behave		
under different flow conditions		
under different now conditions.		
Application to Real-World Scenarios:		
Bernoulli's principle is crucial in		
understanding the lift on airplane		
wings, the operation of spray nozzles,		

the behaviour of fluids in closed and open channels, and even the flow of blood in arteries. This knowledge provides a comprehensive understanding of fluid motion, enabling students to analyse and solve practical problems in both domestic and industrial applications. Summary: This sequence progresses from basic flow concepts to complex fluid dynamics principles, culminating with Bernoulli's principle, which brings together energy, pressure, and flow speed. By following this structured approach, students gain an understanding of fluid motion applicable to engineering, environmental science, and many other fields. This solid foundation allows them to analyse and optimize systems involving fluid flow, preparing them for advanced studies and real-world problem-solving.			
 Knowledge (flipped learning) 	Home – Learning: Assignment A:	Home – Learning: Assignment A:	Home – Learning: Assignment A:
-6 Mark essays to be set when	A report describing health and safety	Students to produce a report or present a	Students produce a report having
appropriate.	legislation relevant to an organisation	project plan proposal supported by a	researched a variety of infectious and
Evam Dractico	describing the base of an discussion,	project plan proposal supported by a	researcheu a variety of miectious and
-Exam Practice	describing the hazards and discussing	logbook.	non-infectious diseases, relating to their

-Pupils are to read extracts prior to	aspects of health and safety		chosen diseases. The report would
the lessons.	management.	Assignment B:	detail the cause and the effect the
-Revision for end of topic tests.		Students to produce a report or present a	disease can have on body systems over
	Assignment B:	project plan proposal supported by a	time. The effect on the quality of life of
	A report containing:	logbook.	the individual suffering from the disease
	 notes and results from making and 		must also be evaluated.
	testing an organic liquid	Assignment C and D:	
	 a description of the principles 	Students to present an evaluative report	Assignment B:
	behind the preparative methods and	of the final project outcomes. Outcomes	In addition to research work, practical
	tests used	could then be presented to a class and	work and simulations should be used to
	 analysis of ways to improve yield 	observation sheets could also be used to	ensure that learners are familiar with
	and purity and the reliability of testing	assess element of self-reflection.	the methods by which infectious
	methods as a guide to purity	Alternatively, this could be an additional	diseases can be transmitted. Prevention
	 an explanation of the principles 	written piece alongside the report	of transmission at a personal level and
	behind the industrial manufacture and		by organisations must be researched. A
	testing of the liquid		report can be produced as evidence.
	• an observation report by the teacher		
	of making and testing the liquid safely.		Assignment C:
			Research will need to be undertaken on
	Assignment C:		the different methods of treating
	A report containing:		diseases. The mode of action of the
	 notes and results from making and 		treatments will need to be analysed.
	testing an organic solid		The accessibility or appropriateness of
	• a description of the principles of		treatments for some people will be
	preparative methods and tests used		evaluated and reported.
	• analysis of ways to improve yield		
	and purity and of the reliability of		Assignment D:
	testing methods as a guide to purity		Reports detailing and comparing the
	• an explanation of the principles		components of the two defence
	behind the industrial manufacture and		mechanisms and their mode of action
	solid		could be produced.
	• an observation report by teacher of		
	making and testing the solid safely.		
	Assignment D:		
	A report containing:		
	• a description of the information		
	stored and used in the laboratory		
L	stored and used in the laboratory		

	 a description of how useful 		
	information can be obtained from		
	large data sets		
	 analysis of the communication 		
	channels in the organisation		
	• evaluation of the benefits and issues		
	involved in making large volumes of		
	data available to others.		
Reading and literacy:	Reading and literacy:	Reading and literacy:	Reading and literacy:
Unit 5 revision guide students to read	Students will investigate a scientific	Literature review	Unit 12 PowerPoints
and make notes.	organisation to gain an understanding	• Identification of criteria, e.g., how many	
	of how it operates by conducting	sources, what is the oldest date that will	Students conduct a lot of research and
Unit 5 Applied science textbook 2	internet-based research. Students will	be looked at, which types of sources will	reading of articles especially medical
	investigate again by reading articles	be excluded.	articles in order to produce a report to
Unit 5 PowerPoints for Biology,	and Applied Science textbook 1 health	• Nature of study, which could include	understand what a disease is and the
Chemistry and Physics.	and safety practices in the	field work, laboratory-based work, sports	causes of diseases and infections that
	organisation's laboratories and	facility, workshop.	affect humans. While non-infectious
Literacy: Key terms which all students	consider related primary and	 Sources of information: 	diseases caused by dietary,
will need to understand for the exam:	secondary legislation. Researching	o identification and location of relevant	environmental, genetic and
Understand these definitions in order to	management of data/information as	and reliable sources of information, e.g.	degenerative factors. The main focus
understand the question:	well as researching how	journal articles, textbooks, websites	will be on causes of infectious diseases,
	data/information within the	o extraction – how to obtain the	and their transmission, prevention and
Add/label: Learners label or add to a	organisation is stored, used and	information from libraries, resource	treatment. There will be the
stimulus material given in the question,	communicated. Large amounts of data	centres, organisations, government	opportunity to research and understand
for example labelling a diagram or	are available for others to use for	organisations, charities	through reading these articles the
adding units to a table.	research purposes, for example by	o recognising and using protocol for	different types of pathogens and
Assess: Learners give careful	organisations interested in DNA	referencing of information sources, to	diseases they cause.
consideration to all the factors or	sequencing or in healthcare. Students	include use of the Harvard referencing	
events that apply and identify which are	will research how these data may be	system.	
the most important or relevant. Make a	used and consider the benefits and		
judgement on the importance of	issues associated with accessing and	Review the investigative project using	
something and come to a conclusion	with making large quantities of data	correct scientific principles:	
where needed.	available for research.	o structure and format o	
		use of correct scientific terminology	
Calculate: Learners obtain a numerical		o past tense, including third person.	
answer, showing relevant working. If			
the answer has a unit, this must be		 References and bibliography: 	
included.		o correctly written	
			1

Comment on: Learners synthesise a number of variables from data/ information to form a judgement. More than two factors need to be synthesised.

Compare: Learners look for the similarities and differences of two (or more) things. Should not require the drawing of a conclusion. Answer must relate to both (or all) things mentioned in the question. The answer must include at least one similarity and one difference.

Complete: Learners complete a table/diagram.

Criticise: Learners inspect a set of data, an experimental plan or a scientific statement and consider the elements. Look at the merits and/or faults of the information presented and back up judgements made.

Deduce: Learners draw/reach conclusion(s) from the information provided.

Derive: Learners combine two or more equations or principles to develop a new equation.

Describe: Learners give an account of something. Statements in the response need to be developed as they are often linked but do not need to include a justification or reason.

o included in appendix o correct use of	
the Harvard referencing system.	
 Scientific evaluation of findings Evaluation of statistical results. Conclusions drawn from primary and secondary data using scientific principles. Limitations of investigative project and areas for improvement. Assessment of information sources used and relevance to investigation experimental and literature investigations. Evaluation of proof, or otherwise, of hypothesis stated. Procommendations for further recearch 	
• Recommendations for further research.	
Lessons will prepare students to be informed that when they are carrying out their search on the scientific topic, they are expected to give a comprehensive bibliography and list of references using a standard protocol, such as the Harvard system. Lessons will prepare learners to produce an appropriate research project proposal for an investigation.	
Lessons will prepare students to show that they can use the material to help them plan their work and indicate its relevance to the investigative work they have in mind. Lessons will prepare learners to understand what a hypothesis is and to come up with a research project proposal. Lessons will prepare learners to include any potential limitations of the project proposal, such as the accuracy of any graduated apparatus or limitations of instruments/sensors.	

Determine: Learners' answers must have an element that is quantitative from the stimulus provided, or must show how the answer can be reached quantitatively. To gain maximum marks there must be a quantitative element to the answer.

Devise: Learners plan or invent a procedure from existing principles/ideas.

Discuss: Learners identify the issue/situation/problem/argument that is being assessed in the question. Explore all aspects of an issue/situation/problem/argument. Investigate the issue/situation, etc. by reasoning or argument.

Draw: Learners produce a diagram, either using a ruler or using freehand.

Evaluate: Learners review information then bring it together to form a conclusion, drawing on evidence, including strengths, weaknesses, alternative actions, relevant data or information. Come to a supported judgement of a subject's qualities and relation to its context.

Explain: Learners' explanations require a justification/ exemplification of a point. The answer must contain some element of reasoning/justification – this can include mathematical explanations.

Give/state/name: These generally require recall of one or more pieces of

Lessons will prepare students to show that they have considered in detail, more than one appropriate investigative method of approach to tackling the hypothesis and explain why their chosen approach is suitable. Lessons will prepare learners to justify their method of approach to the method used in their project proposal, using evidence from their literature review.

information. Give a reason why When a statement has been made and the		
requirement is only to give the reasons		
why.		
Identify: Usually requires some key		
information to be selected from a given		
stimulus/resource.		
marking points accurately on a grid		
from data that is provided and then		
drawing a line of best fit through these noints. A suitable scale and		
appropriately labelled axes must be		
included if these are not provided in the		
question.		
Predict: Learners give an expected		
result.		
Show that: Learners prove that a		
numerical figure is as stated in the		
question. The answer must be to at least one more significant figure than		
the numerical figure in the question.		
Sketch: Learners produce a freehand		
drawing. For a graph this would need a line and labelled axes with important		
features indicated. The axes are not		
scaled.		
State and justify/identify and justify:		
When a selection is made and a		
Justification has to be given for the selection.		
State what is meant by: When the		
are different ways in which this		
meaning can be described.		

Write: When the question asks for an equation.			
Numeracy:	Numeracy:	Numeracy:	Numeracy:
Numeracy:Chemistry:Energy changes in industry• Know the Kelvin scale of temperature.• Know the Kelvin scale of temperature.• Know the definition of enthalpychange, $\Delta H = \Delta U + p\Delta V$, also called'change in heat content'.• Know the standard conditions:o 1 × 105 Pa (100 kPa)o 298 K o per mole (mol-1).• Understand enthalpy change understandard conditions, ΔHo • Know the units of standard enthalpychange kJ mol-1.• Understand the system andsurroundings.• Understand exothermic andendothermic reactions and processes.• Understand the sign convention.• Understand the measurement ofenthalpy changes:o specific heat capacity of watero enthalpy change in water in contactwith a reaction o heat Q = mc Δt • Calculate enthalpy changes from	Numeracy: Assignment B: Manufacturing techniques • Reflux: o principles o equipment in the laboratory and in industry. • Distillation: o simple and fractional o laboratory distillation equipment o distillation towers used in industry. • Solvent extraction: o liquid to liquid. • Use of chemicals to remove impurities: o anhydrous sodium carbonate to react with unreacted acid o anhydrous calcium chloride to remove water o molecular sieves to remove water and other impurities (depending on pore size) o addition of water to remove impurities soluble in water. • Manufacture of either ethyl ethanoate or 3-methylbut-1-yl	Numeracy: Assignment C: Experimental procedures and techniques. Collect, collate and analyse data. Data presentation.	Numeracy: Assignment A: Genetic and degenerative disease • Genetic – inherited through DNA or DNA mutation, e.g. cystic fibrosis, sickle cell anaemia, Huntington's disease: o patterns of inheritance o recessive alleles o Punnett square
supplied data.	ethanoate (banana oil) – one method to be selected:		
Physics: 6 Be able to use the following quantities 6 and units: 6 o power, watt (W), kilowatt (kW), 6 megawatt (MW), gigawatt (GW) 6	o laboratory scale – from ethanol and ethanoic acid (for ethyl ethanoate) o industrial scale – from ethanol and ethanoic acid (for ethyl ethanoate) o other commercial methods.		
o convert ⁻ C to K	Measurement of boiling point:		

o pressure (Pascals (Pa), Newton per	o relation of boiling point of pure
metre squared (Nm–2)).	substances to intermolecular forces
 Know the following definitions: 	o measurement of boiling point with
o work done as energy transferred	distillation apparatus
o work done as force × distance moved	o Siwoloboff method for small
in direction of force (W = $F \times \Delta x$)	quantities
o work done by a gas as pressure ×	o reliability of boiling point as a
change in volume of gas (W = $p \times \Delta V$)	measure of purity.
• Be able to calculate efficiency using	 Infrared spectroscopy:
the relationships:	o comparison of infrared spectrum
o efficiency = useful energy output /	with that of a pure sample.
total energy input	• Other methods used in industry:
o for heat engines: efficiency = 1 out in	o high-performance liquid
Q	chromatography (HPLC)
o Maximum theoretical efficiency = 1 C	o gas chromatography (GC)
HTT-	
• Understand the following concepts: o	Assignment C:
law of conservation of energy	Manufacturing techniques
o ideal gas equation pV = NkT	 Precipitation crystallisation and
o internal energy (U), first law of	recrystallisation:
thermodynamics (Q = ΔU + W)	o terms relating to saturated solutions
o isothermal and adiabatic processes	and supersaturated solutions
o idealised engine cycles	o influence of temperature on
o second law of thermodynamics	solubility
o heat engines, refrigerators and heat	o influence of polarity of solvent on
pumps	solubility
o maximum theoretical coefficient of	o crystallisation – supersaturation,
performance (COP).	nucleation, growth
• Understand the changes of state of	o recrystallisation used as a means of
substances used in domestic and	purifying solids, particularly organic
industrial processes:	solids – choice of solvent for
o transfer of energy producing	recrystallization, the minimum
temperature change or changes of	amount of solvent is used, influence of
state, thermal capacity, thermal	rate of cooling on size of crystals and
equilibrium	presence of impurities.
o specific heat capacity from (ΔQ =	Estimation of purity
mc∆T)	• Assessment of the appearance of
o specific latent heat from ($\Delta Q = \Delta mL$),	crystals as an indicator of purity.
fusion, vapourisation, condensation	Measurement of melting point:
	o simple cooling curves

• Be able to use the following quantities	o design of melting-point apparatus	
and units: o density kgm-3	o choice of thermometer with an	
o tensile/compressive stress (Newton	appropriate range	
per metre squared (Nm-2))	o use of glass melting-point tubes	
o tensile/compressive strain (no units)	o techniques for filling tubes	
o Young's modulus (Newton per metre	o presence of an impurity lowering	
squared (Nm–2)).	the melting point	
• Understand the following definitions:	o identifying a substance by the	
o Density m v ρ = o tensile/compressive	mixed-melting-point technique	
stress = F A	o use of standard substances (benzoic	
o tensile/compressive strain = x L Δ	acid)	
o Young's modulus E = stress strain	o commercial melting point apparatus	
o Hooke's law F = k∆x	o reliability of melting-point and	
o work done in stretching/compressing	mixed-melting-point measurements as	
a wire/spring, Elastic strain energy,	an indicator of purity.	
$\Delta E(el) = 1 2 F\Delta x = 1 2 k(\Delta x)2$	 Thin-layer chromatography (TLC) 	
	using a locating agent.	
Biology:	 Other methods used in industry: 	
 Understand the use of 	o infrared spectroscopy	
electrocardiograms (ECG), to include:		
o significance of PQRST points on an		
ECG trace.		
 Understand the importance of 		
spirometer readings of lung volumes, to		
include:		
o tidal volume		
o inspiratory reserve volume		
o residual volume		
o expiratory reserve volume		
o vital capacity		
o total lung capacity.		
 Understand the importance of the 		
methods used to measure lung function		
for respiratory conditions, to include:		
o peak expiratory flow		
o forced vital capacity.		
Understand the effects of exercise on		
the following using data from		
spirometer traces, to include:		
o tidal volume o breathing rate		

0 0	respiratory minute ventilation oxygen consumption.			
E d C	nrichment / opportunities to evelop cultural capital (including areers, WRL and SMSC):	Enrichment / opportunities to develop cultural capital (including careers, WRL and SMSC):	Enrichment / opportunities to develop cultural capital (including careers, WRL and SMSC):	Enrichment / opportunities to develop cultural capital (including careers, WRL and SMSC):
Cu du op gu w an st co st th TT ch	entres may involve employers in the elivery of this unit if there are local pportunities. There is no specific uidance related to this unit. However <i>v</i> e offer a chance during Science week nd throughout the year for these tudents to go on visits to universities, ompanies visiting the school so that tudents can understand the purpose of nis course and enhance practical skills. hese visits and talks enable students to hoose a career pathway for them too.	Employer involvement: For this unit, students must have access to one or more scientific organisations to investigate, for example organisations involved in manufacturing, contract analysis or providing a technical service such as technician's lab. The organisation should have at least one laboratory with an established laboratory information and management system (paper based or electronic). Visits to, or speakers from, manufacturing industry will be invaluable when learners are researching health and safety practices in the laboratory and elsewhere in the organisation. Visits or speakers will also provide insight into data-management systems. Suitable companies could come from the following list of industries: pharmaceuticals, biopharmaceuticals, metals, printed circuits, bulk chemicals, paints and coatings, agrochemicals, food and drink, refractories, nuclear fuel or reprocessing, water treatment, polymers, textiles. Gas works in Southall.	Completing an investigative project is an excellent way for students to develop an understanding of the science-related workplace. The skills developed in this unit will be of considerable benefit for progression to higher education in a variety of science and science-related courses and to employment in the science or applied science sector.	A visit from the local Environmental Health Department may afford learners an opportunity to understand the role of the department in identifying pathogens and sources of infection and in preventing transmission of pathogens. They may also be able to provide information in relation to environmental diseases and their prevention. It may be possible to arrange a visit from a pharmacist/pharmacologist who will be able to discuss prophylaxis, vaccination and possible treatments for various types of pathogens. Local representatives of local and national organisations and charities may be available to provide information about initiatives in which their organisations are involved to help prevent the spread of disease. This is usually done during Science week.

A speaker from the local NHS trust	
may explain how the organisation	
uses large data sets. This is usually	
done during Science week.	