Programme of study for Year 12 A level Biology

Autumn (1 st term)	Autumn (2 nd term)	Spring (1 st term)	Spring (2 nd Term)	Summer (1 st term)	Summer (2 nd term)
Topic / Big Question:	Topic / Big Question:	Topic / Big Question:	Topic / Big Question:	Topic / Big Question:	Topic / Big Question:
Teacher 1: Introduction	Teacher 1: 3.1 Biological	Teacher 1: 3.4 Genetic	Teacher 1: 3.3	Teacher 1: 3.3	Teacher 1: 3.3
to Statistics at A level	molecules Part 2	information and	Organisms exchange	Organisms exchange	Organisms exchange
Biology, 3.1 Biological		Variation and	substances with their	substances with their	substances with their
molecules part 1	Teacher 2: 3.2 Cells:	relationships between	environment: Gas	environment: Digestion	environment: Mass
Teacher 2: Introduction	Transport across cell	organisms: Genetic	Exchange	and absorption	transport
to Maths at A level	membranes and Cell	information	Organisms exchange	Teacher 2: 3.4 Genetic	Teacher 2: 3.4 Genetic
Biology, 3.2: Cells: Cell	recognition and the	3.3 Organisms exchange	substances with their	information and	information and
Structure and Studying	immune system	substances with their	environment: Digestion	Variation and	Variation and
cells		environment: Gas	and absorption	relationships between	relationships between
3.2 Cells: All cells arise	Skills (students should	Exchange	Teacher 2: 3.4 Genetic	organisms: Species and	organisms: Biodiversity
from other cells	be able to do):		information and	Taxonomy	
	AO1: Demonstrate	Teacher 2: 3.2 Cells: Cell	Variation and		Skills (students should
Skills (students should	knowledge and	recognition and the	relationships between	Skills (students should	be able to do):
be able to do):	understanding of	immune system	organisms: Variation	be able to do):	AO1: Demonstrate
AO1: Demonstrate	scientific ideas,	Teacher 2: 3.4 Genetic	and relationships	AO1: Demonstrate	knowledge and
knowledge and	processes, techniques	information and	between organisms	knowledge and	understanding of
understanding of	and	Variation and	Skills (students should	understanding of	scientific ideas,
scientific ideas,	procedures	relationships between	be able to do):	scientific ideas,	processes, techniques
processes, techniques	AO2: Apply knowledge	organisms: Variation		processes, techniques	and
and	and understanding of	and relationships	AO1: Demonstrate	and	procedures
procedures	scientific ideas,	between organisms	knowledge and	procedures	 AO2: Apply knowledge
AO2: Apply knowledge	processes, techniques		understanding of	 AO2: Apply knowledge 	and understanding of
and understanding of	and procedures:	Skills (students should	scientific ideas,	and understanding of	scientific ideas,
scientific ideas,	 in a theoretical 	be able to do):	processes, techniques	scientific ideas,	processes, techniques
processes, techniques	context	AO1: Demonstrate	and	processes, techniques	and procedures:
and procedures:	 in a practical context 	knowledge and	procedures	and procedures:	 in a theoretical
 in a theoretical 	 when handling 	understanding of	AO2: Apply knowledge	 in a theoretical 	context
context	qualitative data	scientific ideas,	and understanding of	context	 in a practical context
 in a practical context 	 when handling 	processes, techniques	scientific ideas,	 in a practical context 	 when handling
 when handling 	quantitative data	and	processes, techniques	 when handling 	qualitative data
qualitative data		procedures	and procedures:	qualitative data	

when handling	• AO3: Analyse,	AO2: Apply knowledge	• in a theoretical	 when handling 	 when handling
quantitative data	interpret and evaluate	and understanding of	context	quantitative data	quantitative data
• AO3: Analyse,	scientific information,	scientific ideas,	• in a practical context	• AO3: Analyse,	• AO3: Analyse,
interpret and evaluate	ideas and evidence,	processes, techniques	when handling	interpret and evaluate	interpret and evaluate
scientific information,	including in relation	and procedures:	qualitative data	scientific information,	scientific information,
ideas and evidence,	to issues, to:	• in a theoretical	when handling	ideas and evidence,	ideas and evidence,
including in relation	 make judgements and 	context	quantitative data	including in relation	including in relation
to issues, to:	reach conclusions	• in a practical context	• AO3: Analyse,	to issues, to:	to issues, to:
 make judgements and 	develop and refine	when handling	interpret and evaluate	 make judgements and 	 make judgements and
reach conclusions	practical design and	qualitative data	scientific information,	reach conclusions	reach conclusions
develop and refine	procedures.	when handling	ideas and evidence,	develop and refine	 develop and refine
practical design and	procedures.	quantitative data	including in relation	practical design and	practical design and
procedures.		• AO3: Analyse,	to issues, to:	procedures.	procedures.
procedures.		interpret and evaluate	 make judgements and 	procedures.	procedures.
		scientific information,	reach conclusions		
		ideas and evidence,	 develop and refine 		
		including in relation	practical design and		
		to issues, to:	procedures.		
		 make judgements and 	procedures.		
		reach conclusions			
		develop and refine			
		practical design and			
		procedures.			
Key Learning Outcomes					
(students should know):					
Teacher 1:					
Introduction to	3.1 Biological	3.4 Genetic	3.3 Organisms	3.3 Organisms	3.3 Organisms
statistics at A level	molecules:	information, variation	exchange substances	exchange substances	exchange substances
Biology	3.1.5 Nucleic acids are	and relationships	with their environment:	with their environment	with their environment
Chi-squared test,	important information-	between organisms	3.3.3 Digestion and	3.3.3 Digestion and	3.3.4 Mass transport
Student's T-test	carrying molecules	3.4.2 DNA and protein	absorption	absorption	5. Dissection of animal or
Correlation coefficient,	(structures and functions)	synthesis (processes)	During digestion, large	Mechanisms for the	plant respiratory system
Standard deviation	The semi-conservative		biological molecules are	absorption of the products	or mass transport system
3.1 Biological	replication of DNA	3.3 Organisms	hydrolysed to smaller	of digestion by cells lining	or of organ within such a
molecules:	(purpose and process)	exchange substances	molecules that can be	the ileum of mammals, to	system.
	Evaluate the work of	with their environment	absorbed across cell	include	3.3.4.2 Mass transport in
	scientists in validating the		membranes.	3.3.4 Mass transport	plants
			Digestion in mammals of:		

	Matana Calabara da La	2.2.1 Comfree contracts	a sub a baselua ta sub	Our and a man all in the second	
3.1.1 Monomers and	Watson–Crick model of	3.3.1 Surface area to	-carbohydrates by	Over large distances,	Xylem as the tissue that
polymers (structures,	DNA replication	volume ratio	amylases and membrane-	efficient movement of	transports water in the
functions and properties)	3.1.6 ATP Structure,	3.3.2 Gas exchange	bound disaccharidases	substance to and from	stem and leaves of plants.
3.1.2 Carbohydrates	function and formation		- lipids by lipase, including	exchange surfaces is	The cohesion-tension
(structures, functions and	during photosynthesis, or		the action of bile salts	provided by mass	theory of water transport
properties)	during respiration	Teacher 2:	- proteins by	transport	in the xylem.
Biochemical tests using	3.1.7 Water;		endopeptidases,	3.3.4.1 Mass transport in	Phloem as the tissue that
Benedict's solution for	importance, properties,	3.2 Cells	exopeptidases and	animals	transports organic
reducing sugars and non-	functions	3. Production of a dilution	membrane-bound	Structure and functions of	substances in plants. The
reducing sugars and	3.1.8 Inorganic ions	series of a solute to	dipeptidases	haemoglobins in relation	mass flow hypothesis for
iodine/potassium iodide	Each type of ion has a	produce a calibration		to the oxyhaemoglobin	the mechanism of
for starch.	specific role, depending on	curve with which to	Teacher 2:	dissociation curve.	translocation in plants.
3.1.3 Lipids	its properties.	identify the water	3.4 Genetic information,	The cooperative nature of	The use of tracers and
(structures, functions and	Recognise the role of ions	potential of plant tissue.	variation and	oxygen binding.	ringing experiments to
properties).	3.4 Genetic	4. Investigation into the	relationships between	The effects of carbon	investigate transport in
The emulsion test for	information, variation	effect of a named variable	organisms	dioxide concentration on	plants.
lipids.	and relationships	on the permeability of	organisms	the dissociation of	- recognise correlations
3.1.4 Proteins	between organisms	cell-surface membranes.	Gene mutations and	oxyhaemoglobin (the Bohr	and causal relationships
3.1.4.1 General properties	3.4.1 DNA, genes and		how due to the	effect).	- interpret evidence from
of proteins (structures,	chromosomes (structures		degenerate nature of	Animal adaptations to	tracer and ringing
functions and properties)	and functions)	3.2.4 Cell recognition and	the genetic code, not all	their environment by	experiments and to
The biuret test for		the immune system	base substitutions cause	possessing different types	evaluate the evidence for
proteins.	Teacher 2:	, Each type of cell has		of haemoglobin with	and against the mass flow
3.1.4.2 Many proteins	3.2 Cells	specific molecules on its	a change in the	different oxygen transport	hypothesis
are enzymes (structures,		surface that identify	sequence of encoded	properties.	
functions and properties)	3.2.2 All cells arise from	-pathogens	amino acids. Mutagenic	The general pattern of	Teacher 2:
The induced-fit model	other cell	-cells from other	agents can increase the	blood circulation in a	3.4 Genetic
of enzyme action.	Cell cycle stages	organisms of the same	rate of gene mutation.	mammal. The gross	information, variation
The specificity of	Stages of mitosis	species	Mutations in the	structure of the human heart. Pressure and	and relationships
enzymes	including appearance	-abnormal body cells	number of		between organisms
The effects of factors on	and behaviour of	-toxins	chromosomes by	volume changes and	3.4.6 Biodiversity within
the rate of enzyme-	chromosomes	Definition of antigen.	chromosome non-	associated valve	a community
controlled reactions –	Division of the	The effect of antigen	disjunction during	movements during the	Biodiversity can relate to a
How models of enzyme	cytoplasm (cytokinesis)	variability on disease and	meiosis.	cardiac cycle that maintain a unidirectional flow of	range of habitats.
action have changed	usually occurs,	disease prevention.	Meiosis produces	blood.	Species richness is a
-	•	Phagocytosis of		The structure of arteries,	measure of the number of
over time	producing two new	pathogens.	daughter cells that are	arterioles and veins in	different species in a
1. Investigation into the	cells. Mitosia is a controlled	Destruction of ingested	genetically different	relation to their function.	community.
effect of a named variable	Mitosis is a controlled	pathogens by lysozymes	from each other.		An index of diversity and
	process.		The process of meiosis		how to calculate it.

on the rate of an enzyme- controlled reaction. Teacher 2: Introduction to Maths at A level Biology Perform maths skills including: -converting between units, standard form, and prefixes, -using significant figures -rearranging formulae -magnification calculations -calculating percentages, errors, and uncertainties -drawing and interpreting line graphs. 3.2 Cells 3.2.1 Cell structure The structure of eukaryotic cells; structure and function of: -cell-surface membrane - nucleus (containing chromosomes, consisting of protein-bound, linear DNA, and one or more nucleoli) - mitochondria - chloroplasts (in plants and algae) - Golgi apparatus and Golgi vesicles - lysosomes (a type of Golgi vesicle that releases lysozymes)	Uncontrolled cell division can lead to cancers. Cancer treatments are directed at controlling the rate of cell division. Binary fission in prokaryotic cells Viral replication process 2. Preparation of stained squashes of cells from plant root tips; setup and use of an optical microscope to identify the stages of mitosis in these stained squashes and calculation of a mitotic index. 3.2.3 Transport across cell membranes The basic structure of all cell membranes. The arrangement and any movement of phospholipids, proteins, glycoproteins and glycolipids in the fluid- mosaic model of membrane structure. Cholesterol function 3.2.3 Transport across cell membranes; Movement across membranes occurs by:	The response of T lymphocytes to a foreign antigen (the cellular response). The response of B lymphocytes to a foreign antigen, clonal selection and the release of monoclonal antibodies (the humoral response). Definition of antibody. 3.4 Genetic information, variation and relationships between organisms 3.4.3 Genetic diversity can arise as a result of mutation or during meiosis	3.4.4 Genetic diversity and adaptation. Genetic diversity as the number of different alleles of genes in a population. Genetic diversity is a factor enabling natural selection to occur. The principles of natural selection in the evolution of populations. Directional selection, exemplified by antibiotic resistance in bacteria, and stabilising selection, exemplified by human birth weights. Natural selection results in species that are better adapted to their environment. These adaptations may be anatomical, physiological or behavioural. 6. Use of aseptic techniques to investigate the effect of antimicrobial substances on microbial growth.	The structure of capillaries and the importance of capillary beds as exchange surfaces. The formation of tissue fluid and its return to the circulatory system. Teacher 2: 3.4 Genetic information, variation and relationships between organisms 3.4.5 Species and taxonomy Two organisms belong to the same species if they are able to produce fertile offspring. Courtship behaviour as a necessary precursor to successful mating. The role of courtship in species recognition. A phylogenetic classification system attempts to arrange species into groups based on their evolutionary origins and relationships. It uses a hierarchy in which smaller groups are placed within larger groups, with no overlap between groups. Each group is called a taxon (plural taxa). One hierarchy comprises the taxa: domain, kingdom, phylum, class, order, family, genus and species.	Farming techniques reduce biodiversity. The balance between conservation and farming. 3.4.7 Investigating diversity Genetic diversity within, or between species, can be made by comparing: - the frequency of measurable or observable characteristics - the base sequence of DNA - the base sequence of mRNA - the base sequence of mRNA - the amino acid sequence of the proteins encoded by DNA and mRNA Quantitative investigations of variation within a species involve: - collecting data from random and systematic samples - calculating a mean value of the collected data and the standard deviation of that mean - interpreting mean values and their standard deviations.
---	---	---	---	---	--

- ribosomes	simple diffusion		Pinomial system	
	-simple diffusion		Binomial system Appreciate that advances	
 rough endoplasmic reticulum and smooth 	(involving limitations		in immunology and	
endoplasmic reticulum	imposed by the nature		genome sequencing help	
-	of the phospholipid		o i o i	
- cell wall (in plants, algae	bilayer)		to clarify evolutionary	
and fungi)	fosilitated diffusion		relationships between	
- cell vacuole (in plants).	-facilitated diffusion		organisms.	
In complex multicellular	(involving the roles of			
organisms, eukaryotic	carrier proteins and			
cells become specialised	channel proteins)			
for specific functions.	- osmosis (explained in			
Specialised cells are	terms of water			
organised into tissues,				
tissues into organs and	potential)			
organs into systems	- active transport			
Prokaryotic cells differ	(involving the role of			
from eukaryotic cells in	carrier proteins and the			
having:	importance of the			
 cytoplasm that lacks 	hydrolysis of ATP)			
membrane-bound	nyurorysis of ATF j			
organelles	-co-transport			
- smaller ribosomes	(illustrated by the			
- no nucleus; instead	absorption of sodium			
they have a single	ions and glucose by cells			
circular DNA molecule	lining the mammalian			
that is free in the	ileum)			
cytoplasm and is not	ilearry			
associated with	- Adaptations of cells for			
proteins	rapid transport across			
- a cell wall that	their membranes			
contains murein, a				
glycoprotein.	- How factors affect the			
In addition, many	rate of movement			
prokaryotic cells have:	across cell membranes			
- one or more plasmids				
- a capsule surrounding				
the cell				
3.2.1.3 Methods of				
studying cells				

The principles and limitations of optical microscopes, transmission electron microscopes and scanning electron microscopes. 3.2.1.3 Methods of studying cells Measuring the size of an object viewed with an optical microscope. The difference between magnification and resolution. Use of the formula: Principles of cell fractionation and ultracentrifugation as used to separate cell components.						
Autumn Term – centrally and teacher marked piece		Spring Term – centrally pla teacher marked piece(s) of		Summer Term – centrally and teacher marked piece		
	3.1 Biological molecules and 3.2 Cells		3.1 Biological molecules, 3.2 Cells, 3.3 Organisms		3.1 Biological molecules, 3.2 Cells, 3.3 Organisms	
Essay on Water		exchange substances with their environment and		exchange substances with their environment and		
Biological drawings skill assessment		3.4 Genetic information, variation and		3.4 Genetic information, variation and		
		relationships between organisms		relationships between organisms		
		Essay on importance of Nitro	gen containing substances	Essay on movement of subs		
Duilding understanding: Dationals / breakdown		Duilding understanding: Dationals (based)		Essay on importance of shapes fitting together		
Building understanding: Rationale / breakdown		Building understanding: Rationale / breakdown		Building understanding: Rationale / breakdown		
for your sequence of lessons: Introduction to Statistics at A Level Biology:		for your sequence of lessons:		for your sequence of lessons: 3.3 Organisms exchange substances with their		
This is a short sequence of lessons designed to give		Biological molecules: 3.4 Genetic information, variation and relationships		environment		
students a greater appreciation of how to correctly		between organisms		Understanding the process of digestion and		
prepare experiments, verify conclusions and				absorption builds upon the study of intestinal		

properly interpret results. These skills underpin everything they will study on the course and so are taught explicitly and then revisited regularly over the rest of the topics and required practical's.

Biological molecules:

All life on Earth shares a common chemistry. These biological molecules are the basis of all the structures and chemical reactions that are taught later on in the course and so a solid understanding of them is an essential foundation. This provides indirect evidence for evolution which is a topic that is taught in year 13. Despite their great variety, the cells of all living organisms contain only a few groups of carbon-based compounds that interact in similar ways. Carbohydrates are commonly used by cells as respiratory substrates; this allows students to understand respiration in year 13. They also form structural components in plasma membranes and cell walls which is taught in Autumn 2. Lipids have many uses, including the bilayer of plasma membranes taught in Autumn 2, and certain hormones as taught in year 13 and as respiratory substrates, as also taught in year 13.

Proteins form many cell structures. They are also important as enzymes (comes up throughout year 12 and 13 eg in respiration and photosynthesis), chemical messengers (Hormones topic in Year 13) and components of the blood (mass transport later in year 12). Nucleic acids carry the genetic code for the production of proteins. The genetic code is common to viruses and to all living organisms (Provides the basis upon which to learn variation through mutations), providing evidence for evolution which is taught in year 13.

The most common component of cells is water; hence our search for life elsewhere in the universe involves a search for liquid water (students develop this idea when studying photosynthesis in year 13). Understanding the properties of water is essential in Having recently finished studying the structure and function of DNA, students have the foundations to understand that genes are sections of DNA located at a particular site on a DNA molecule, called its locus. They are also able to apply their understanding of nucleotide bases to understand that the base sequence of each gene carries the coded genetic information that determines the sequence of amino acids during protein synthesis. The genetic code used is the same in all organisms, providing indirect evidence for evolution which is studied in year 13. **3.3 Organisms exchange substances with their environment**

The exchange of substances between the internal and external environments takes place at exchange surfaces which contain specialised cells studied previously in the cells topic. To truly enter or leave an organism, most substances must cross cell plasma membranes (as taught earlier by teacher 2 in transport across membranes). Most cells are too far away from exchange surfaces, and from each other, for simple diffusion alone to maintain the composition of tissue fluid within a suitable metabolic range so there is a need for organ systems (a concept studied in the specialised cells topics earlier this year).

3.2 Cells

Cell-surface membranes contain embedded proteins which act as antigens, allowing recognition of 'self' and 'foreign' cells by the immune system 9this links back to work on structure of cell membranes done last term). Interactions between different types of cell are involved in disease, recovery from disease and prevention of symptoms occurring at a later date if exposed to the same antigen, or antigen-bearing pathogen (Students have considered lymphocyte epithelial cells done with Teacher 2 earlier on in the year. This provides an understanding of their adaptations for the absorption process. In large organisms, exchange surfaces are associated with mass transport systems that carry substances between the exchange surfaces and the rest of the body and between parts of the body which is underpinned by the concept of surface area to volume ratio which was taught earlier this year. Mass transport maintains the final diffusion gradients that bring substances to and from the cell membranes of individual cells (as explained in transport across membranes). It also helps to maintain the relatively stable environment that is tissue fluid, which starts to support the development of homeostasis concepts for study in year 13.

3.4 Genetic information, variation and relationships between organisms

This genetic diversity is acted upon by natural selection (which gives students the basis for their study of evolution next year), resulting in species becoming better adapted to their environment. -Variation within a species can be measured using differences in the base sequence of DNA or in the amino acid sequence of proteins (the foundations for this were taught in Biological molecules at the start of the year).

- Biodiversity within a community can be measured using species richness and an index of diversity, this topic involves field work which gives students a strong foundation for their ecology unit and required practical in year 13. order to understand how water is transported within organisms- a topic taught later on in year 12. Students should be able to relate the structure of proteins to properties of proteins named throughout the specification in year 12 and 13. Students should appreciate that enzymes catalyse a wide range of intracellular and extracellular reactions that determine structures and functions from cellular to whole-organism level eg photosynthesis and respiration in year 13.

Introduction to Maths at A Level Biology: This is a short sequence of lessons designed to reinforce the foundation maths skills students need to access the A Level Biology course fully. For example; calculating magnification of cells, converting between units, rounding off answers properly, rearranging formulae, calculating uncertainties and errors, and choosing the most appropriate ways of displaying data. These skills are taught explicitly and then revisited regularly over the rest of the topics and required practical's.

3.2 Cells

All life on Earth exists as cells, therefore to progress further in the study of Biology, a sound understanding of the basic building blocks is required which is why it is the first topic taught. These have basic features in common. Differences between cells are due to the addition of extra features. This provides indirect evidence for evolution which is studied in year 13. Cells are the building blocks of tissues, organs and systems covered in the Exchange and transport topic taught later on in year 12. All cells arise from other cells, by binary fission in prokaryotic cells and by mitosis and meiosis in eukaryotic cells (the later which is taught later on in year 12 during the Variation topic). Cells may be adapted for rapid transport across their internal or external membranes by an increase in surface area of, or by an increase in the number of

structure and function in the prior study of specialised cells).

3.4 Genetic information, variation and relationships between organisms

Biological diversity – biodiversity – is reflected in the vast number of species of organisms, in the variation of individual characteristics within a single species and in the variation of cell types within a single multicellular organism (building on their study of genes from last term).

Differences between species reflect genetic differences. Differences between individuals within a species could be the result of genetic factors, of environmental factors, or a combination of both.
Genetic diversity within a species can be caused by gene mutation (building on their understanding of the structure of genes from last term), chromosome mutation (building on their study of chromosome structure last term) or random factors associated with meiosis and fertilisation.

protein channels and carrier molecules in, their membranes (Specialisations of cells was covered last term and is the foundation to understand this). -explain the adaptations of specialised cells in relation to the rate of transport across their internal and external membranes The subsequent destruction of ingested pathogens by lysozymes (which were studied in the organelles sections of cell structure topic). All cells have a cell-surface membrane and, in addition, eukaryotic cells have internal membranes. The basic structure of these plasma membranes is the same and enables control of the passage of substances across exchange surfaces by passive or active transport. Cell- surface membranes contain embedded proteins (structural proteins studied last term with teacher 1). Some of these are involved in cell signalling – communication between cells.		
support students in the development of their extend	nich involves outside reading and note taking, thereby	purpose by underlining key command words in exam

BBC Science Focus Scientific America

Organisations & Websites Natural History Museum : <u>www.nhm.ac.uk</u> Science Museum : <u>www.sciencemuseum.org.uk</u> The Royal Society : royalsociety.org Royal Society of Biologists : rsb.org.uk <u>www.arkive.org</u> <u>www.ted.com</u> <u>https://ed.ted.com/lessons?category=science-technology</u> <u>www.thenakedscientists.com</u> <u>www.nuffieldfoundation.org/practical-biology</u> <u>www.youtube.com/user/Kurzgesagt</u> <u>www.youtube.com/user/thehealthcaretriage</u> <u>www.youtube.com/user/Kurzgesagt</u>

- Nature and New Scientist magazines (articles are often posted on social media).
- The Chemistry of Life Steven Jones.
- Language of the Genes and Almost Like a Whale Steven Jones.
- Genome Matt Ridley.
- The Wisdom of the Genes Christopher Wills.
- Darwin's Dangerous Idea Daniel Dennett.
- The Selfish Gene and The Extended Phenotype Richard Dawkins.
- Virolution Frank Ryan.
- Life Ascending Nick Lane.
- The Revenge of Gaia James Lovelock.
- 50 Genetic Ideas You Really Need to Know Mark Henderson.
- Zoobiquity Barbara Natterson-Horowitz and Kathryn Bowers.
- Creation: The Origin of Life Adam Rutherford.
- Maths Skills for A level Biology.

Numeracy:

10% of the A level biology exams are assessed via mathematical questions including the main key areas below:

Standard Form –to read standard form and convert into and from standard form. Also understanding the actual size of particular organelles. For instance, a mitochondrion would be measured in micrometres where as a virus would be measured in nanometres.

Powers and indices – Understanding and manipulating powers.

Shapes – to calculate the area, perimeter and volume of shapes such as cones and spheres.

Units – As well as micrometres and nanometres; how to convert from one unit to another so grams to kilograms for instance.

Statistical Tests – to interpret the results of a statistical test when given the formulas and the variables. Understanding the significance of a test result and why that test was selected.

Graphs and Data – Different types of graphs and data questions. How to read and construct a histogram as well as interpret bar charts, line graphs, scatter graphs.

Algebra in A Level Biology – Understanding and using the principle calculations which requires algebra skills. Other types of algebra questions will be limited to basic rearrangements and substitutions.

Enrichment / opportunities to develop cultural capital (including careers, WRL and SMSC):

Enrichment workshops, lectures and visits will be organised as part of the science week programme. Subscription to Biological Sciences Review magazine, which students are referred to for outside reading. Where possible students will be given the opportunity to attend an A level Biology field trip.