Programme of study for Year 13 A Level Biology

Autumn (1 st term)	Autumn (2 nd term)	Spring (1 st term)	Spring (2 nd Term)	Summer (1 st term)	Summer (2 nd term)
Topic / Big Question:	Topic / Big Question:	Topic / Big Question:	Topic / Big Question:	Topic / Big Question:	
Teacher 1:	Teacher 1:	Teacher 1:	Teacher 1:	Teacher 1:	
3.5 Energy transfer in	3.5 Energy transfer in	3.7 Genetics,	3.7 Genetics,	3.7 Genetics,	Revision and Public
and between	and between organisms	populations, evolution	populations, evolution	populations, evolution	Exams
organisms	Teacher 2:	and ecosystems	and ecosystems	and ecosystems	EXdIIIS
Teacher 2:	3.6 Organisms respond	Teacher 2:	Teacher 2:	Teacher 2:	
3.6 Organisms respond	to changes in their	3.6 Organisms respond	3.8 The Control of Gene	3.8 The Control of Gene	
to changes in their	internal and external	to changes in their	expression	expression	
internal and external	environments	internal and external			
environments		environments			
Skills (students should	Skills (students should	Skills (students should	Skills (students should	Skills (students should	
be able to do):	be able to do):	be able to do):	be able to do):	be able to do):	
AO1: Demonstrate	AO1: Demonstrate	AO1: Demonstrate	AO1: Demonstrate	AO1: Demonstrate	
knowledge and	knowledge and	knowledge and	knowledge and	knowledge and	
understanding of	understanding of	understanding of	understanding of	understanding of	
scientific ideas,	scientific ideas,	scientific ideas,	scientific ideas,	scientific ideas,	
processes, techniques	processes, techniques	processes, techniques	processes, techniques	processes, techniques	
and	and	and	and	and	
procedures	procedures	procedures	procedures	procedures	
• AO2: Apply	AO2: Apply knowledge	• AO2: Apply knowledge	AO2: Apply	AO2: Apply knowledge	
knowledge and	and understanding of	and understanding of	knowledge and	and understanding of	
understanding of	scientific ideas,	scientific ideas,	understanding of	scientific ideas,	
scientific ideas,	processes, techniques	processes, techniques	scientific ideas,	processes, techniques	
processes, techniques	and procedures:	and procedures:	processes, techniques	and procedures:	
and procedures:	• in a theoretical	 in a theoretical context 	and procedures:	 in a theoretical 	
 in a theoretical 	context	 in a practical context 	 in a theoretical 	context	
context	• in a practical context	 when handling 	context	 in a practical context 	
• in a practical context	when handling	qualitative data	• in a practical context	 when handling 	
when handling	qualitative data	 when handling 	 when handling 	qualitative data	
qualitative data	when handling	quantitative data	qualitative data	when handling	
when handling	quantitative data	• AO3: Analyse,	 when handling 	quantitative data	
quantitative data	quantitative uata	interpret and evaluate	quantitative data	• AO3: Analyse,	
quantitative uata				interpret and evaluate	

 AO3: Analyse, interpret and evaluate scientific information, ideas and evidence, including in relation to issues, to: make judgements and reach conclusions develop and refine practical design and procedures. 	 AO3: Analyse, interpret and evaluate scientific information, ideas and evidence, including in relation to issues, to: make judgements and reach conclusions develop and refine practical design and procedures. 	scientific information, ideas and evidence, including in relation to issues, to: • make judgements and reach conclusions • develop and refine practical design and procedures.	 AO3: Analyse, interpret and evaluate scientific information, ideas and evidence, including in relation to issues, to: make judgements and reach conclusions develop and refine practical design and procedures. 	scientific information, ideas and evidence, including in relation to issues, to: • make judgements and reach conclusions • develop and refine practical design and procedures.	
Key Learning Outcomes (students should know): Teacher 1: 3.5.1 Photosynthesis The light-dependent reaction The light-independent reaction Identify environmental factors that limit the rate of photosynthesis evaluate data relating to common agricultural practices used to overcome the effect of these limiting factors Required practical 7: Use of chromatography to investigate the pigments isolated from leaves of different plants, e.g., leaves from shade-tolerant and shade-intolerant plants	Key Learning Outcomes (students should know): Teacher 1: 3.5.2 Respiration Respiration produces ATP. Stages of Glycolysis. Aerobic respiration; Krebs cycle, chemiosomotic theory, other respiratory substrates include the breakdown products of lipids and amino acids, which enter the Krebs cycle Required practical 9: Investigation into the effect of a named variable on the rate of respiration of cultures of single-celled organisms 3.5.3 Energy and ecosystems How to measure biomass and its chemical energy store	Key Learning Outcomes (students should know): Teacher 1: 3.7.1 Inheritance The genotype The phenotype Alleles may be dominant, recessive or codominant. In a diploid organism, the alleles at a specific locus may be either homozygous or heterozygous. The use of fully labelled genetic diagrams to interpret, or predict, the results of: -monohybrid and dihybrid crosses involving dominant, recessive and codominant alleles - crosses involving sex-	Key Learning Outcomes (students should know): Teacher 1: 3.7.2 Populations Meaning of population. The concepts of gene pool and allele frequency. The Hardy–Weinberg principle provides a mathematical model, which predicts that allele frequencies will not change from generation to generation. The conditions under which the principle applies. The frequency of alleles, genotypes and phenotypes in a population can be calculated using the Hardy–Weinberg equation 3.7.3 Evolution may lead	Key Learning Outcomes (students should know): Teacher 1: 3.7.4 Populations in ecosystems How the size of a population can be estimated using: - randomly placed quadrats, or quadrats along a belt transect, for slow-moving or non- motile organisms - the mark-release- recapture method for motile organisms. The assumptions made when using the mark-release- recapture method Ecosystems are dynamic systems. Primary succession, from colonisation by pioneer species to climax community.	

or leaves of different	Gross primary	linkage, multiple alleles	The process of Evolution	Conservation of habitats
colours.	production	and epistasis Use of the	through Natural	frequently involves
Required practical 8:	Net primary	chi-squared test to	selection	management of
Investigation into the	production	compare the goodness	The effects of stabilising,	succession.
effect of a named factor	Calculations of the net	of fit of observed	directional and	Required practical 12:
on the rate of	production of	phenotypic ratios with	disruptive selection.	Investigation into the
dehydrogenase activity	consumers	expected ratios	Evolution as a change in	effect of a named
in extracts of	Primary and secondary		the allele frequencies in	environmental factor on
chloroplasts.	productivity is the rate		a population.	the distribution of a given
Teacher 2:	of primary or	Teacher 2:	Reproductive separation	species
3.6 Organisms respond	secondary production,	3.8 The Control of Gene	of two populations	
to changes in their	respectively.	expression	New species arise	Revision and Intervention
internal and external	Appreciate the ways in	3.8.1 Alteration of the	through speciation.	
environments	which production is	sequence of bases in	Allopatric and sympatric	Teacher 2:
Know the meanings of	affected by farming	DNA can alter the	speciation.	
-	practices designed to	structure of proteins	The importance of	3.8.4.2 Differences in DNA
stimulus, receptor, stimulus, coordinator	increase the efficiency	The different types of	genetic drift in causing	between individuals of the
and effector.	of energy transfer.	Gene mutations that	changes in allele	same species can be
Nerve cell and electrical	3.5.4 Nutrient Cycles	might arise during DNA	frequency in small	exploited for identification
	exemplified by the	replication. How and	populations.	and diagnosis of heritable
impulses	nitrogen cycle and the	why they occur and the	3.7.4 Populations in	conditions, drug responses or health risks.
Mammalian hormones	phosphorus cycle.	impact on the encoded	ecosystems	Genetic counselling and
Specificity and mode of	Microorganisms role.	polypeptide.	Meaning of community	personalised medicine.
action.	The role of saprobionts	3.8 The Control of	and ecosystem. Within a	3.8.4.3 Genetic
Plants control their	in decomposition.	Gene expression	habitat, a species	fingerprinting in the fields
response using	The role of	3.8.2 Gene	occupies a niche	of forensic science,
hormone-like growth	mycorrhizae. The role of bacteria in	expression is	governed by adaptation to both abiotic and biotic	medical diagnosis, animal
substances.		controlled by a	conditions.	and plant breeding.
3.6.1 Stimuli, both	the nitrogen cycle The use of natural and	number of features		
internal and external,	artificial fertilisers and	3.8.2.1 Most of a cell's DNA is not	An ecosystem supports a certain size of population	Revision and
are detected and lead	environmental issues		of a species, called the	Intervention
to a response	arising: leaching and	translated Properties of	carrying capacity. Factors	
3.6.1.1 Survival and	eutrophication.	Totipotent cells and	affecting carrying	
response	Teacher 2:	how	capacity.	
The effect of different		cell specialisation		
concentrations of indole	3.6.4 Homeostasis is the	occurs. Properties of	Teacher 2:	
acetic acid (IAA) on cell	maintenance of a stable	pluripotent cells,	3.8.2.3 Gene expression	
elongation.	internal environment		and cancer	
		1		1I

	· · · ·		
nervous system and	series of a glucose		
effectors in controlling	solution and use of		
heart rate.	colorimetric techniques to		
3.6.2 Nervous	produce a calibration		
coordination	curve with which to		
3.6.2.1 Nerve impulses	identify the concentration		
The structure of a	of glucose in an unknown		
myelinated motor	'urine' sample		
neurone.	3.6.4.3 Control of blood		
The establishment of a	water potential		
resting potential and the	Osmoregulation. The roles		
generation of an action	of the hypothalamus,		
potential.	posterior pituitary and		
The passage of an action	antidiuretic hormone		
potential along non-	(ADH) in osmoregulation.		
myelinated and	The structure of the		
myelinated axons	nephron and its role		
The nature and			
importance of the			
refractory period.			
Factors affecting the			
speed of conductance:			
myelination and saltatory			
conduction; axon			
diameter; temperature.			
3.6.2.2 Synaptic			
transmission			
The detailed structure of a			
synapse and of a			
neuromuscular junction.			
The sequence of events			
involved in transmission			
across a cholinergic			
3.6.3 Skeletal muscles are			
stimulated to contract by			
nerves and act as			
effectors			
Muscles act in			
antagonistic pairs			

Gross and microscopic structure of skeletal muscle. The ultrastructure of a myofibril. The roles of actin, myosin, calcium ions and ATP in myofibril contraction. The roles of calcium ions and tropomyosin in the cycle of actinomyosin bridge formation. The roles of ATP and phosphocreatine in muscle contraction. The structure, location and general properties of slow and fast skeletal muscle fibres.	olanned, standardised	Spring Term – centrally pla	anned, standardised and		
and teacher marked piece(s) of work 3.4 Genetic information and Variation Linear test		teacher marked piece(s) of work Mock exams covering:		Public Exams	
3.6 Chapter 14 linear test		3.5 Energy transfer in and between organisms			
3.5 Energy transfer in and linear test	between organisms	3.6 Organisms respond to changes in their internal and external environments, 3.7 Genetics,			
Assessed Essay on importa	ance of ions	populations, evolution and ecosystems, 3.8 The			
		Control of Gene expression.			
		3.7 Linear exam on Inheritance, variation, evolution			
		3.8 Linear exam on Gene ex	pression		
Building understanding: Rationale / breakdown		Building understanding: Rationale / breakdown			
for your sequence of lessons:		for your sequence of lessons:			
Teacher 1:		Teacher 1: 3.7 Genetics, populations, evolution and ecosystems			
3.5 Energy transfers in and between organismsLife depends on continuous transfers of energy.		- The theory of evolution underpins modern Biology. All			
- In photosynthesis, light is absorbed by		new species arise from an existing species. This results			
chlorophyll and this is linked to the production of		in different species sharing a common ancestry, as			
ATP which was studied in	•	represented in phylogenetic	classification. Common		

In respiration, various substances are used as respiratory substrates, these were covered in Biological molecules. The hydrolysis of these respiratory substrates is linked to the production of ATP, hydrolysis was also covered in year 12.
In both respiration and photosynthesis, ATP production occurs when protons diffuse down an electrochemical gradient through molecules of the enzyme ATP synthase, embedded in the membranes of cellular organelles. This links back to inorganic ions in biological molecules.

- The process of photosynthesis is common in all photoautotrophic organisms and the process of respiration is common in all organisms, providing indirect evidence for evolution which is studied in the summer term.

- In communities, the biological molecules (studied in year 12) produced by photosynthesis are consumed by other organisms, including animals, bacteria and fungi. Some of these are used as respiratory substrates by these consumers.

Teacher 2:

3.6 Organisms respond to changes in their internal and external environments

-Nerve cells were covered in specialised cells in year 12. They pass electrical impulses along their length. A nerve impulse is specific to a target cell only because it releases a chemical messenger directly onto it, producing a response that is usually rapid, short-lived and localised.

- In contrast, mammalian hormones stimulate their target cells via the blood system. They are specific to the tertiary structure of receptors (covered in Biological molecules year 12) on their target cells (covered in cell signalling year 12) and produce responses that are usually slow, long-lasting and widespread.

ancestry can explain the similarities between all living organisms, such as common chemistry (e.g. all proteins made from the same 20 or so amino acids which links back to biological molecules and genetic variation form year 12), physiological pathways (e.g. anaerobic respiration), cell structure (as studied in year 12), DNA as the genetic material and a 'universal' genetic code (as studied in genetic variation Year 12). - A species exists as one or more populations. There is variation in the phenotypes of organisms in a population, due to genetic and environmental factors (this links back to concepts from Genetic variation topic from year 12). Two forces affect genetic variation in populations: genetic drift and natural selection. Genetic drift can cause changes in allele frequency in small populations. Natural selection occurs when alleles that enhance the fitness of the individuals that carry them rise in frequency. A change in the allele frequency of a population is evolution (this also links back to Antibiotic resistance in bacteria from the year 12 variation topic. - Populations of different species live in communities. Competition occurs within and between these populations for the means of survival. Within a single community, one population is affected by other populations, the biotic factors, in its environment (This topic links back to concepts in Biodiversity taught in year 12). Populations within communities are also affected by, and in turn affect, the abiotic (physicochemical) factors in an ecosystem.

Teacher 2:

3.8 The Control of Gene expression

- Cells are able to control their metabolic activities by regulating the transcription and translation of their genome (this links back to specialised cells taught in year 12). Although the cells within an organism carry the same coded genetic information, they translate only part of it. In multicellular organisms, this control of translation enables cells to have specialised functions, forming tissues and organs (year 12 topic provides the foundation concepts for this).

	-Consideration of cellular control mechanisms underpin the content of this section. Students who have studied it should develop an understanding of the ways in which organisms and cells control their activities. This should lead to an appreciation of common ailments resulting from a breakdown of these control mechanisms and the use of DNA technology in the diagnosis and treatment of human diseases (This links to the hereditary conditions taught in the Genetics topic taught by teacher 1.	
Home – Learning: Flip learning; students complete notes from their textbook for homework and answer the questions on each double page spread. Students will have standardised topic workbooks for each topic to complete as part of their home learning. Students will also be asked to complete various essays as part of their home learning. They will redraft and improve upon their essays from their end of year 12 exams.	Home – Learning: Flip learning; students complete notes from their textbook for homework and answer the questions on each double page spread. Students will have standardised topic workbooks for each topic to complete as part of their home learning. Students will also be asked to complete various essays as part of their home learning for example 'the importance of ATP'.	Home – Learning: Flip learning; students complete notes from their textbook for homework and answer the questions on each double page spread. Students will have standardised topic workbooks for each topic to complete as part of their home learning. Students will also be asked to complete various essays as part of their home learning for example 'the importance of membranes'.
Reading / High Quality Text: Literacy support is provided through scaffolding for support students in the development of their extend	the essay questions; using PEEL approach (Point, Expla ded writing skills. Students are also taught to read for p hich involves outside reading and note taking, thereby ^h form library)	ourpose by underlining key command words in exam
BBC Science Focus Scientific America Organisations & Websites		
Natural History Museum : <u>www.nhm.ac.uk</u> Science Museum : <u>www.sciencemuseum.org.uk</u> The Royal Society : royalsociety.org Royal Society of Biologists : rsb.org.uk		

www.arkive.org

www.ted.com

https://ed.ted.com/lessons?category=science-technology

www.thenakedscientists.com

www.nuffieldfoundation.org/practical-biology

www.youtube.com/user/Kurzgesagt

www.youtube.com/user/thehealthcaretriage

www.youtube.com/user/Kurzgesagt

- Nature and New Scientist magazines (articles are often posted on social media).
- The Chemistry of Life Steven Jones.
- Language of the Genes and Almost Like a Whale Steven Jones.
- Genome Matt Ridley.
- The Wisdom of the Genes Christopher Wills.
- Darwin's Dangerous Idea Daniel Dennett.
- The Selfish Gene and The Extended Phenotype Richard Dawkins.
- Virolution Frank Ryan.
- Life Ascending Nick Lane.
- The Revenge of Gaia James Lovelock.
- 50 Genetic Ideas You Really Need to Know Mark Henderson.
- Zoobiquity Barbara Natterson-Horowitz and Kathryn Bowers.
- Creation: The Origin of Life Adam Rutherford.
- Maths Skills for A level Biology.

Numeracy:

Standard Form –to read standard form and convert into and from standard form. Also understanding the actual size of particular organelles. For instance, a mitochondrion would be measured in micrometres where as a virus would be measured in nanometres.

Powers and indices – Understanding and manipulating powers.

Shapes – to calculate the area, perimeter and volume of shapes such as cones and spheres.

Units – As well as micrometres and nanometres; how to convert from one unit to another so grams to kilograms for instance.

Statistical Tests – to interpret the results of a statistical test when given the formulas and the variables. Understanding the significance of a test result and why that test was selected.

Graphs and Data – Different types of graphs and data questions. How to read and construct a histogram as well as interpret bar charts, line graphs, scatter graphs.

Algebra in A Level Biology – Understanding and using the Hardy-Weinberg principle calculations which requires algebra skills. Other types of algebra questions will be limited to basic rearrangements and substitutions.

Enrichment / opportunities to develop cultural capital (including careers, WRL and SMSC):

Enrichment workshops, lectures and visits will be organised as part of the science week programme. Subscription to Biological Sciences Review magazine, which students are referred to for outside reading.