Programme of study for Year 12 Chemistry

Autumn (1 st term)	Autumn (2 nd term)	Spring (1 st term)	Spring (2 nd Term)	Summer (1 st term)	Summer (2 nd term)
Other timescale: From: September To: November	Other timescale: From: November To: December	Other timescale: From: January To: February	Other timescale: From: February To: April	Other timescale: From: April To: May	Other timescale: From: June To: July
Topic / Big Question: Teacher 1: Topic: Bonding	Topic / Big Question: Teacher 1: Topic: Kinetics	Topic / Big Question: Teacher 1 Topic: Haloalkanes	Topic / Big Question: Teacher 1 Topic: Alkenes	Topic / Big Question: Teacher 1: Topic: Alcohols	Topic / Big Question: Teacher 1: Topic: Organic analysis
Topic: Bonding Teacher 2: Topic: Atomic structure Skills(students should be able to do) AO1: Demonstrate knowledge and understanding of scientific ideas, processes, techniques and procedures. AO2: Apply knowledge and understanding of scientific ideas, processes, techniques and procedures: • in a theoretical context • in a practical context • when handling qualitative data • when handling qualitative data. AO3: Analyse, interpret and evaluate scientific information, ideas and evidence, including in relation. to issues, to: • make judgements and reach conclusions • develop and refine practical design and procedures.	Topic: Kinetics Topic: Nomenclature and Alkanes Teacher 2: Topic: Amount of substance Skills (students should be able to do): AO1: Demonstrate knowledge and understanding of scientific ideas, processes, techniques and procedures. AO2: Apply knowledge and understanding of scientific ideas, processes, techniques and procedures: • in a theoretical context • in a practical context • when handling qualitative data • when handling qualitative data. AO3: Analyse, interpret and evaluate scientific information, ideas and evidence, including in relation. to issues, to: • make judgements and reach conclusions • develop and refine practical design and procedures.	Topic: Haloalkanes Teacher 2: Topic: Energetics Skills (students should be able to do): AO1: Demonstrate knowledge and understanding of scientific ideas, processes, techniques and procedures. AO2: Apply knowledge and understanding of scientific ideas, processes, techniques and procedures: • in a theoretical context • in a practical context • when handling qualitative data • when handling quantitative data. AO3: Analyse, interpret and evaluate scientific information, ideas and evidence, including in relation. to issues, to: • make judgements and reach conclusions • develop and refine practical design and procedures.	Topic: Alkenes Teacher 2: Topic: Equilibria Skills (students should be able to do): AO1: Demonstrate knowledge and understanding of scientific ideas, processes, techniques and procedures. AO2: Apply knowledge and understanding of scientific ideas, processes, techniques and procedures: • in a theoretical context • in a practical context • when handling qualitative data. AO3: Analyse, interpret and evaluate scientific information, ideas and evidence, including in relation. to issues, to: • make judgements and reach conclusions • develop and refine	Topic: Alcohols Teacher 2: Topic: Redox Topic: Group 2 and 7 Skills (students should be able to do): AO1: Demonstrate knowledge and understanding of scientific ideas, processes, techniques and procedures. AO2: Apply knowledge and understanding of scientific ideas, processes, techniques and procedures: • in a theoretical context • when handling qualitative data • when handling qualitative data. AO3: Analyse, interpret and evaluate scientific information, ideas and evidence, including in relation. to issues, to: • make judgements and reach conclusions • develop and refine practical design and procedures.	Topic: Organic analysis Teacher 2: Topic: periodicity Skills (students should be able to do): Solve problems set in practical contexts. Apply scientific knowledge to practical contexts Comment on experimental design and evaluate scientific methods. Present data in appropriate ways Evaluate results and draw conclusions with reference to measurement uncertainties and errors. Identify variables including those that must be controlled. Plot and interpret graphs. Process and analyse data using appropriate mathematical skills as exemplified in the mathematical appendix for each science. Consider margins of

Key Learning Outcomes	Key Learning Outcomes	Key Learning Outcomes	Key Learning Outcomes	Key Learning Outcomes	Key Learning
(students should know):	(students should know):	(students should know):	(students should know):	(students should know):	Outcomes
Be able to:		`````	,	``````````````````````````````````````	(students should know):
	Teacher 1: kinetics	Teacher 1:	Teacher 1: Alkenes	Teacher 1: Alcohols	Teacher 1: Organic
Teacher 1: Bonding	Define the term activation energy	Halogenoalkanes	define the term	use partial charges to	analysis
	explain why most collisions do not	outline the nucleophilic	stereoisomer.	show that a bond is polar.	
predict the charge on a	lead to a reaction.	substitution mechanisms of			identify the functional
simple ion using the position		these reactions.	draw the structural	explain why some	groups using reactions
of the element in the Periodic	Draw and interpret distribution		formulas of E and Z	molecules with polar	in the specification.
Table	curves for different temperatures.	explain why the carbon-	isomers.	bonds do not have a	
		halogen bond enthalpy influences the rate of		permanent dipole.	use precise atomic
construct formulas for ionic	Use the Maxwell–Boltzmann	reaction.	apply the CIP priority		masses and the precise
compounds.	distribution to explain why a small		rules to E and Z isomers.	explain the meaning of	molecular mass to
	temperature increase can lead to	eveloin the rele of the		the term biofuel.	determine the
Represent a covalent bond	a large increase in rate.	explain the role of the reagent as both	outline the mechanisms		molecular formula of a
using a line and a co-		nucleophile and base.	for addition reactions.	justify the conditions used	compound.
ordinate bond using an	Explain how a change in			in the production of	
arrow.	concentration or a change in	outline the elimination	explain the formation of	ethanol by fermentation	use infrared spectra
	pressure influences the rate of a		major and minor	of glucose.	and the Chemistry
relate the melting point and	reaction.	mechanisms of these reactions.	products by reference to		Data Sheet or Booklet
conductivity of materials to		reactions.	the relative stabilities of	write equations to support	to identify particular
the type of structure and the	Use a Maxwell–Boltzmann		primary, secondary and	the statement that	bonds, and therefore
bonding present.	distribution to help explain how a	use equations, such as the	tertiary carbocation	ethanol produced by	functional groups, and
	catalyst increases the rate of a	following, to explain how chlorine atoms catalyse	intermediates.	fermentation is a carbon-	also to identify impurities.
explain the energy changes	reaction involving a gas.	decomposition of ozone:		neutral fuel and give	imponnes.
associated with changes of			draw the repeating unit	reasons why this statement	
state.	Teacher 1: Nomenclature and	$CI \bullet + O_3 \rightarrow CIO \bullet + O_2$ and	from a monomer	is not valid.	Teacher 2: Periodicity
	Alkanes	$CIO \bullet + O_3 \rightarrow 2O_2 + CI \bullet$	structure.		Period 3:
draw diagrams to represent		$Close + O_3 \rightarrow ZO_2 + Close$		outline the mechanism for	- explain the
these structures involving	draw structural, displayed and	Tagahar 2: Energation	draw the repeating unit	the formation of an alcohol by the reaction of	trends in
specified numbers of	skeletal formulas for given organic	Teacher 2: Energetics	from a section of the	an alkene with steam in	atomic radius
particles.	compounds.	Define standard enthalpy	polymer chain.	the presence of an acid	and first
		of combustion and		catalyst.	ionisation
explain the shapes of, and	apply IUPAC rules for	formation.	draw the structure of the	caralysi.	energy.
bond angles in, simple	nomenclature to name organic		monomer from a section	discuss the environmental	- explain the
molecules and ions with up to	compounds limited to chains and	Use q=mc∆T equation to	of the polymer.	(including ethical) issues	melting point
six electron pairs (including	rings with up to six carbon atoms	calculate the molar		linked to decision making	of the
lone pairs of electrons)	each.	enthalpy change for a	explain why addition	about biofuel use.	elements in
surrounding the central atom.		reaction	polymers are unreactive.		terms of their
	apply IUPAC rules for			write equations for	structure and
use partial charges to show	nomenclature to draw the	Use q=mc∆T in related	explain the nature of	oxidation reactions of	bonding.
that a bond is polar.	structure of an organic compound	calculations.	intermolecular forces	alcohol (equations	
	from the IUPAC name limited to chains and rings with up to six		between molecules of	showing [O] as oxidant	
explain why some molecules	chains and rings with up to six carbon atoms each.	Define the term mean	polyalkenes.	are acceptable)	
with polar bonds do not have		bond enthalpy.		. ,	
a permanent dipole.	define the term structured is a struct		Teacher 2: Equilibria	explain how the method	
	define the term structural isomer.			used to oxidise a primary	
1					l

explain the existence of these	draw the structures of chain,	Use mean bond	Use Le Chatelier's	alcohol determines	
forces between familiar and	position and functional group	enthalpies to calculate an	principle to predict	whether an aldehyde or	
unfamiliar molecules.	isomers.	approximate value of ΔH	qualitatively the effect of	carboxylic acid is	
		for reactions in the	changes in temperature,	obtained.	
explain how melting and	explain the economic reasons for	gaseous phase.	pressure and		
boiling points are influenced	cracking alkanes.		concentration on the	use chemical tests to	
by these intermolecular		Explain why values from	position of equilibrium.	distinguish between	
forces.	Distinguish the differences	mean bond enthalpy		aldehydes and ketones	
	Distinguish the differences between thermal and catalytic	calculations differ from	Explain why, for a	including Fehling's solution	
	cracking.	those determined using	reversible reaction used	and Tollens' reagent.	
	crucking.	Hess's law.	in an industrial process, a		
Teacher 2: Atomic structure	Write a substant for a proplete and		compromise	outline the mechanism for	
reacher 2. Afomic siructure	Write equations for complete and incomplete combustion.	Use Hess's law to perform	temperature and	the elimination of water	
		calculations, including	pressure may be used.	from alcohols.	
		calculation of enthalpy			
	explain why sulfur dioxide can be	changes for reactions	Construct an expression	Teacher 2: Redox	
interpret simple mass spectra	removed from flue gases using calcium oxide or calcium	from enthalpies of	for kc for a homogenous	work out the oxidation	
of elements.	carbonate.	combustion or from	system in equilibrium.	state of an element in a	
	carbonale.	enthalpies of formation.		compound or ion from the	
calculate relative atomic			Calculate a value for kc	formula.	
mass from isotopic	explain reaction as a free-radical		from the equilibrium		
abundance, limited to	substitution mechanism involving		concentrations for a	write half-equations	
mononuclear ions.	initiation, propagation and termination steps.		homogenous system at	identifying the oxidation	
			a constant temperature.	and reduction processes	
define first ionisation energy.				in redox reactions.	
	Use equations, such as the		Perform calculations		
write equations for first and	following, to explain how chlorine atoms catalyse decomposition of		involving kc	combine half-equations to	
successive ionisation	ozone.			give an overall redox	
energies.	020118.		Predict the qualitative	equation.	
			effects of changes of		
explain how first and	Teacher 2: Amount of substance		temperature on the	Teacher 2: Group 2 and 7	
successive ionisation energies			value of kc.		
in Period 3 (Na–Ar) and in	define relative atomic mass (Ar)			Group 2:	
Group 2 (Be–Ba) give			derive partial pressure		
evidence for electron	define relative molecular mass		from mole fraction and	explain the trends in	
configuration in sub-shells	(Mr)		total pressure	atomic radius and first	
and in shells.				ionisation energy.	
	carry out calculations:		construct an expression		
			for Kp for a	explain the melting point	
	- using the Avogadro		homogeneous system in	of the elements in terms of	
	constant		equilibrium	their structure and	
	 using mass of substance, 			bonding.	
	Mr, and amount in moles		perform calculations		
	 using concentration, 		involving Kp	explain why BaCl2 solution	
	volume and amount of			is used to test for sulfate	
	substance in a solution.		predict the qualitative	ions and why it is acidified.	
			effects of changes in	· ·	
			temperature and		

		-		
Use the PV=nRT in calculatio	5.	pressure on the position	Group 7:	
		of equilibrium		
calculate empirical formula	om		explain the trend in	
data giving composition by		predict the qualitative	electronegativity.	
or percentage by mass.		effects of changes in	с, ,	
		temperature on the	explain the trend in the	
calculate molecular formula	rom	value of Kp	boiling point of the	
the empirical formula and re			elements in terms of their	
molecular mass.		understand that, whilst a	structure and bonding.	
		catalyst can affect the	silociole and boriality.	
		rate of attainment of an		
write balanced equations for		equilibrium, it does not	Explain why:	
reactions studied.		affect the value of the		
		equilibrium constant.	- silver nitrate	
balance equations for unfar	iliar	equilibriorit constant.	solution is used to	
reactions when reactants ar	k		identify halide	
products are specified.			ions.	
			- the silver nitrate	
Use balanced equations to			solution is	
calculate:			acidified.	
			- ammonia solution	
marcor			is added.	
- masses				
- volumes of gases - percentage yields			The use of chlorine in	
- percentage atom			water treatment.	
economies				
- concentrations and			The reaction of chlorine	
volumes for reaction	in		with cold, dilute, aqueous	
solutions.			NaOH and uses of the	
3010110113.			solution formed.	
			solonom tormed.	
			Carry out simple test-tube	
			reactions to identify:	
			- cations – Group 2,	
			NH4 ⁺	
			- anions – Group 7	
			(halide ions), OH-,	
			CO ₃ ^{2–} , SO ₄ ^{2–}	
End of term 1 assessment to cover:	End of term 2 assessment t	o cover:	End of year assessment to cover:	
Entry exam in September based on GCSE content.	End of topic test- Amount		End of topic test – alcohols and organic analysis	
End of topic test – Bonding	End of topic test – Haloalko		End of topic test – redox, groups 2&7 and periodicity	
	End of topic test – Energeti	cs and equilibria		
End of topic test –atomic structure	January Linear assessment		Linear assessment that covers all topics done in the	
Kinetics required practical.			first year (two papers).	
End of topic test nomenclature and alkanes				
End of topic test – Amount of substance				

Building understanding: Rationale / breakdown for your sequence of lessons:

Teacher 1 delivers physical chemistry and organic chemistry. Teacher 2 delivers inorganic and physical chemistry. This is split in the same way as how the examination papers are.

Physical chemistry is interleaved throughout the two years and taught by both teachers.

Teacher 1:

Bonding: Bonding is often introduced first because it's essential to understanding how compounds are formed. It lays the foundation for students to comprehend chemical reactions and the behaviour of atoms and molecules.

Kinetics: Kinetics, the study of reaction rates, is a logical follow-up to bonding. Once students understand how compounds are formed, they can then delve into how these compounds react and how fast these reactions occur. This topic introduces students to the concept of chemical change and reaction mechanisms.

Introduction to Organic Chemistry: Organic chemistry is typically introduced after the fundamental principles of bonding and kinetics have been covered. This is because it builds upon these principles and introduces students to the vast field of carbon-based compounds, which is essential for understanding a wide range of chemical reactions and compounds.

Alkanes: Alkanes are usually among the first organic compounds studied because they are the simplest hydrocarbons, composed of only carbon and hydrogen. They provide a straightforward introduction to the nomenclature, structure, and isomerism in organic chemistry.

Halogenoalkanes: Halogenoalkanes, or alkyl halides, are a natural progression from alkanes as they introduce functional groups and chemical reactions in organic molecules. This topic expands on the concept of carbon-carbon and carbon-halogen bonds, which students would have already encountered.

Alkenes: Alkenes are another crucial group of organic compounds, introducing the concept of double bonds. After understanding alkanes and halogenoalkanes, students can grasp the significance of different functional groups in organic molecules.

Alcohols: Alcohols introduce another common functional group, the hydroxyl group (-OH). This topic builds upon previous knowledge of bonding and organic reactions, allowing students to understand the properties and reactions of alcohol compounds.

Organic Analysis: Organic analysis is often taught towards the end of the organic chemistry section because it combines knowledge of all the previous topics. It focuses on the identification and analysis of organic compounds, utilizing techniques like spectroscopy, chromatography, and mass spectrometry. Students need a solid understanding of the earlier topics to effectively analyse and interpret the data obtained from these methods.

In summary, the sequencing of these topics follows a logical progression from foundational principles (bonding and kinetics) to the more complex and specialised aspects of organic chemistry. This approach helps students build their knowledge step by step and allows for a smoother transition between topics.

Teacher 2:

Atomic Structure: This topic is often introduced first because it lays the foundation for understanding all other chemical principles and it builds on content taught at GCSE. It covers the fundamental concepts of the atom, including the structure of the nucleus, electron arrangement, and the periodic table. Without a grasp of atomic structure, it's challenging to understand other chemical phenomena.

Amount of Substance: After students have a good understanding of atomic structure, the concept of amount of substance comes into play. This topic introduces the mole concept, stoichiometry, and how to calculate quantities of substances in chemical reactions. It's a fundamental concept that connects atomic theory to practical chemical calculations.

Energetics: Energetics deals with the concept of energy changes in chemical reactions, such as enthalpy changes, heat, and bond energies. Once students understand the basics of chemical reactions and stoichiometry, they can start exploring the energy aspect of these reactions, which is critical for understanding reaction mechanisms and thermodynamics.

Equilibria: Equilibria builds on the understanding of chemical reactions and energy changes. It introduces the concept of dynamic chemical equilibria, the equilibrium constant, and Le Chatelier's principle. This topic helps students comprehend how reactions reach a state of balance and how they can be influenced.

Redox: Redox (reduction-oxidation) reactions involve the transfer of electrons between substances. By introducing redox after equilibria, students have a firm grasp of reaction dynamics and energy changes, making it easier to understand electron transfer reactions.

Group 2 and 7: Transitioning to specific groups in the periodic table provides students with an opportunity to apply their knowledge of atomic structure, bonding, and reactivity to a subset of elements. Groups 2 and 7 (alkali metals and halogens) have distinctive properties and reactivity patterns, which are easier to explore once students have a solid foundation in fundamental chemistry.

Periodicity: The periodicity topic ties everything together by emphasising the patterns and trends in the periodic table. It builds on the students' understanding of atomic structure, bonding, and the properties of elements in specific groups. It helps students identify and predict trends in properties like atomic size, ionisation energy, and electron affinity across the periodic table.

In summary, this sequencing is designed to help students progress from fundamental concepts (atomic structure) to more complex topics (energetics, equilibria, redox) and finally apply their knowledge to specific groups of elements (Group 2 and 7) before exploring the periodic trends that unify the entire periodic table. This gradual progression provides students with a structured and logical approach to understanding chemistry.

Home – Learning:	Home – Learning:	Home – Learning:	Home – Learning:	Home – Learning:	Home – Learning:	
Teacher to set based on	Assessed home-learning on	Assessed home-learning	Assessed home-learning	Assessed home learning	 	
course content and required	bonding.	on atomic structure.	on amount of substance.	on alkenes and alcohols.	Research tasks for	
practical.					required practical's	
	Amount of substance booklet to	Assessed home-learning	Assessed home-learning	Assessed home learning		
	be completed through the	on nomenclature.	on alkanes and	on equilibrium		
	duration of half term		Halogenoalkanes			
Reading / literacy:						
	are given pre-learning reading on top					
	lining keywords and command words					
	per there is a 6-mark question where		ation is assessed. This is taugh [.]	t through modelling techniqu	es of looking at previous	
students work and assessing wh	nere the marks are given and what m	akes a good answer.				
Numeracy:		Numeracy:		Numeracy:		
	20% of marks in A-level assessments will require the use of		Amount of substance involves looking at calculations		Recognise and make use of appropriate units in	
mathematical skills therefore is	an integral part of their learning.	within chemistry.		calculation		
		Students will need to report calculations to				
Students are required to work of		appropriate number of significant figures.		Redox equations require students use charges of		
work out bond angles for shap	es of molecules in bonding.	They will have to convert units.		species to ensure both side		
		Students will be taught how		inserting electrons into the e	equation.	
J	., calculation of an atomic mass	measurements and use simple techniques to				
based on supplied isotopic ab	based on supplied isotopic abundances		determine uncertainty when data are combined.			
		Use ratios, percentages an				
	nce and velocity equations used in	select appropriate titration data (i.e. identification of				
	atomic structure. The two equations are combined. They also use		outliers) in order to calculate mean titres.			
Avogadro's constant to calculate mass one ion.		Students are required to draw graphs and draw				
Recognise and make use of appropriate units in calculation.		tangents to work out rate of	tangents to work out rate of reaction.			
Recognise and make use of ap						
		Evaluate the effect of char				
Students are required to calcul	late weighted means a g		e values e.g. how the value			
calculation of an atomic mass		of Kc would change with to				
Abundances.		specified conditions (estim	ate value).			
7.00110011003.						

	Recognise and make use of appropriate units in calculation.	
	Calculate the value of an equilibrium constant Kc and Kp.	
Enrichment / opportunities to develop cultural capital (including care Enrichment workshops, lectures and visits will be organised as part of found in the sixth form library. This magazine contains useful articles a	the science week programme and students are encoura	ged to read chemistry review magazine that can be