Programme of study for Year 13 Chemistry

Autumn (1 st term)	Autumn (2 nd term)	Spring (1 st term)	Spring (2 nd Term)	Summer (1 st term)	Summer (2 nd term)
Other timescale:	Other timescale:	Other timescale:	Other timescale:	Other timescale:	Other timescale:
From: September To:	From: November	From: Jaunary To:	From: February To: April	From: April To: May	From: June To: July
November	To: December	February	, ,	,	,
Topic / Big Question:	Topic / Big Question:	Topic / Big Question:	Topic / Big Question:	Topic / Big Question:	Topic / Big Question:
Teacher 1:	Teacher 1:	Teacher 1:	Teacher 1:	Teacher 1:	
Topic: Optical isomerism	Topic: acids and bases	Topic: Aromatic Chemistry	Continue with Amines and	Topic: chromatography,	
and aldehydes and		Topic: Amines and	polymers.	organic synthesis and	
ketones; Carboxylic acid	Teacher 2:	polymers	Topic: Amino acids, proteins,	analysis.	Revision and public
and its derivatives	Topic: thermodynamics	, ,	DNA	,	examinations
	and entropy	Teacher 2:		Teacher 2:	
Teacher 2:		Topic: electrode potential	Teacher 2:	Topic: properties of	
Topic: review of kinetics and		and electrochemical cells	Topic: transitions metals and	period 3 and their oxides	
then introduce rate	Skills (students should be		reactions of ions in aqueous		
equations	able to do):		solutions	Skills (students should be	
•	AO1: Demonstrate	Skills (students should be		able to do)	
	knowledge and	able to do):		AO1: Demonstrate	
Skills (students should be	understanding of scientific	AO1: Demonstrate	Skills (students should be able	knowledge and	
able to do)	ideas, processes,	knowledge and	to do):	understanding of	
AO1: Demonstrate	techniques and	understanding of scientific	AO1: Demonstrate	scientific ideas, processes,	
knowledge and	Procedures.	ideas, processes,	knowledge and	techniques and	
understanding of scientific	AO2: Apply knowledge	techniques and	understanding of scientific	Procedures.	
ideas, processes,	and understanding of	Procedures.	ideas, processes, techniques	AO2: Apply knowledge	
techniques and	scientific ideas, processes,	AO2: Apply knowledge	and	and understanding of	
Procedures.	techniques and	and understanding of	Procedures.	scientific ideas, processes,	
AO2: Apply knowledge and	procedures:	scientific ideas, processes,	AO2: Apply knowledge and	techniques and	
understanding of scientific	 in a theoretical context 	techniques and	understanding of scientific	procedures:	
ideas, processes,	 in a practical context 	procedures:	ideas, processes, techniques	 in a theoretical context 	
techniques and	 when handling 	 in a theoretical context 	and procedures:	 in a practical context 	
procedures:	qualitative data	 in a practical context 	 in a theoretical context 	 when handling 	
 in a theoretical context 	 When handling 	 when handling 	 in a practical context 	qualitative data	
 in a practical context 	quantitative data.	qualitative data	 when handling qualitative 	 When handling 	
 when handling qualitative 	AO3: Analyse, interpret	 When handling 	data	quantitative data.	
data	and evaluate scientific	quantitative data.	When handling quantitative	AO3: Analyse, interpret	
When handling	intormation, ideas and	AO3: Analyse, interpret	data.	and evaluate scientific	
quantitative data.	evidence, including in	and evaluate scientific	AU3: Analyse, interpret and	intormation, ideas and	
AU3: Analyse, Interpret and	relation.	information, ideas and	evaluate scientific	evidence, including in	
evaluate scientific	TO ISSUES, TO:	evidence, including in	information, laeas and	relation.	
	make judgements and		evidence, including in		
evidence, including in				• make judgements and	
	• develop and reline		• make judgements and	• dovelop and refine	
• make judgements and	procedures	develop and refine		• develop and reline	
	procedures.		• dovelop and refine	procedures	
develop and refine		proclical design and	Practical design and	procedures.	
• develop und reline		procedures.	procedures		
procedures			procedures.		
procedures.					

key Learning Outcomes (students should know): Be able to:	(students should know):	(students should know):	(students should know):	(students should know):	(students should know):
Teacher 1: Optical	Teacher 1: Acids and bases	teacher 1: Aromatic chemistry	Teacher 1: Amino acids, proteins and DNA.	Teacher 1: chromatography, organic synthesis and analysis.	
isomerism, aldehydes and ketones, carboxylic acid and their derivatives	Define acids and bases.	use thermochemical evidence from enthalpies of hydrogenation to account for this extra	draw the structures of amino acids as zwitterions and the ions formed from amino acids:	calculate Rf values from a chromatogram.	
draw the structural formulas and displayed formulas of enantiomers.	vice versa Calculate the pH of a	stability. Explain why substitution reactions occur in	in acid solution in alkaline solution.	compare retention times and Rf values with standards to identify different substances.	
Understand how racemic mixtures (racemates) are formed and why they are optically inactive.	from its concentration.	preference to addition reactions. outline the electrophilic	draw the structure of a peptide formed from up to three amino acids.	Explain why chemists aim to design processes that do not require a solvent	
Write overall equations for reduction reactions using [H] as the reductant.	ot a strong base from its concentration. Construct an expression for	substitution mechanisms of: nitration, includina the	draw the structure of the amino acids formed by hydrolysis of a peptide.	and that use non- hazardous starting materials.	
Outline the nucleophilic addition mechanism for reduction reactions with NaBH4 (the nucleophile should be shown as H-)	Ka. Perform calculations relating the pH of a weak acid to the concentration of the acid and the dissociation constant, Ka.	generation of the nitronium ion. acylation using AICI3 as a catalyst.	identify primary, secondary and tertiary structures in diagrams. explain how these structures are maintained by hydrogen	explain why chemists aim to design production methods with fewer steps that have a high percentage atom economy.	
write overall equations for the formation of hydroxynitriles using HCN.	Convert Ka into pKa and vice versa.	Explain the difference in base strength in terms of	calculate rf values from chromatogram.	Use reactions in this specification to devise a synthesis, with up to four steps, for an organic	
outline the nucleophilic addition mechanism for the	sketch and explain the shapes of typical pH curves.	the availability of the lone	Explain why a stereospecific active site can only bond to	ςοπρουπα.	

reaction with KCN followed	Use pH curves to select an	pair of electrons on the N	one enantiomeric form of a	explain why TMS is a	
by dilute acid	appropriate indicator	atom	substrate or drug	suitable substance to use	
			sobstitute of drog.	as a standard	
Explain why nucleophilic	Explain qualitatively the	outline the mechanisms of:	Explain now hydrogen		
addition reactions of KCN,	action of aciaic and basic		bonding between base pairs		
tollowed by dilute acia, can	butters.	these nucleophilic	leads to the two	spectra ana cnemical	
produce a mixture of		substitution reactions	complementary strands of	shift data from the	
enantiomers.	Calculate the pH of acidic		DNA.	Chemistry Data Booklet to	
	buffer solutions.	The nucleophilic addition-		suggest possible structures	
Be able to explain why		elimination reactions of	Explain why cisplatin prevents	or part structures for	
carboxylic acids are weak	Teacher 2 -	ammonia and primary	DNA replication explain why	molecules	
acids and their reactions.	thermodynamics and	amines with acyl chlorides.	such drugs can have adverse		
	entropy		effects.	use integration data from	
Give reaction conditions to	0111009			H ¹ NMR spectra to	
produce esters		draw the repeating unit	Calculate rf values from a	determine the relative	
	define edch of the dbove	from monomer structure(s)	chromatoaram	numbers of equivalent	
	terms and lattice enthalpy.		en en la logiciti.	protons in the molecule.	
Hydrolysis of esters		draw the repeating unit			
	construct Born–Haber	from a section of the	Compare retention times and	Use the $n+1$ rule to	
Outline the mechanism of	cycles to calculate lattice	polymer chain.	RT with standards to identify	deduce the spin-spin	
nucleophilic addition-	enthalpies using these		aitterent substances.	splitting patterns of	
elimination reactions of acyl	enthalpy changes.	draw the structure(s) of the		adjacent non-equivalent	
chlorides with water,		monomer(s) from a section	Teacher 2: Transition metals	protons limited to	
alcohols, ammonia and	construct Born–Haber	of the polymer.		doublet triplet and	
primary amines.	cycles to calculate one of		Be able to show equations for	quartet formation in	
	the other enthalpy	Evolation the parture of the	ligand exchange reactions.	aliphatic compounds	
Teacher 2: Rates	changes				
		hetwoon male cules of	Evolution the chalate offect in	To such as 0. Draw antian of	
Poviow Maxwell Poltzmann	compare lattice enthalpier	condensation polymorr	terms of the balance	Teacher 2: Properties of	
distribution out of	from Porp. Habor cyclor	condensation polymers.	between the entropy and	period 3 and meir oxides	
distribution curves.	with those from		onthalpy change in these		
	with those from	Explain why polyesters and	regetiens	melting point of the	
define the terms order of	calculations based on a	polyamides can be	reactions.	oxides of the elements	
reaction and rate constant.	peneci ionic model io	hydrolysed but polyalkenes		Na–S in terms of their	
		cannot.	Illustrate shapes of complex	structure and bonding	
perform calculations using			ions and explain the		
the rate equation.		Teacher 2: electrode	tormation ot shapes.	explain the trends in the	
		potential		reactions of the oxides	
explain the qualitative	define the term enthalpy		Draw diagrams for cis and	with water in terms of the	
effect of changes in	ot hydration.	Use $\mathbf{F} \mathbf{\theta}$ values to predict	trans isomers.	type of bonding present	
temperature on the rate		the direction of simple		in each oxide.	
constant k	perform calculations of an	redox reactions	Explain how transition metal		
	enthalpy change using		ion complexes can form	Write equations for the	
	these cycles.		colours	reactions that occur	
perform calculations using		calculate the EMF of a		between the oxider of	
the equation k=Ae-Ea/KI	calculate entropy	Cell.		the elements Mars and	
	changes from absolute		Use Δ E=h hv = hc/ λ to	aiven acids and bases	
understand that the	entropy values		pertorm calculations	given acias and bases.	
equation k=Ae-Ea/RT can be					
rearranged into the form					

Ink=-Ea/RT+InA and know	use the relationship $\Delta G =$	Write and apply the	Be able to explain use of	
how to use this rearranged	$\Delta H - T\Delta S$ to determine how	conventional	simple colorimeter.	
equation with experimental	ΔG varies with	representation of a cell.		
data to plot a straight-line	temperature		Perform calculations for these	
graph with slope –Ea/R		use given electrode data	redox titrations and similar	
	use the relationship $\Lambda G =$	to deduce the reactions	redox reactions	
use concentration-time	$\Delta H - T \Delta S$ to determine the	occurring in non-		
araphs to deduce the rate	temperature at which a	recharaeable and	calculate entreny changes	
of a reaction.	reaction becomes	rechargeable cells.	from absolute entropy changes	
	feasible.		from absolute entropy values.	
use initial concentration-		deduce the EME of a cell		
time data to deduce the			Use the relationship $\Delta G = \Delta H - T \Delta G$	
initial rate of a reaction.		Evolain how the electrode	λαγίος with temporature	
		explain now the electrode	valles with temperature	
use rate-concentration		depende an electric		
data or graphs to deduce		current	Use the relationship $\Delta G = \Delta H - $	
the order (0, 1 or 2) with			$I\Delta S$ to determine the	
respect to a reactant.			remperature at which a	
			reaction becomes teasible.	
derive the rate equation for				
a reaction from the orders			Explain the importance of	
with respect to each of the			variable oxidation states in	
reactants			catalysis.	
Use the orders with respect			Explain, with the aid of	
to reactants to provide			equations, how V_2O_5 acts as	
information about the rate			a catalyst in the contact	
determining/limiting step of			process.	
a reaction.				
			Explain, with the aid of	
			equations, how Fe ²⁺ ions	
			catalyse the reaction	
			between I- and S2O82-	
			Explain, with the aid of	
			equations, how Mn2+ ions	
			autocatalyse the react ion	
			between $C_2O_4^2$ and MnO ₄ -	
			Teacher 2: Reactions of ions	
			in aqueous solution	
			Explain, in terms of the	
			charge/size ratio of the metal	
			ion, why the acidity of [M	
			$(H2O)_6]^{3+}$ is greater than that	
			ot [M(H2O)6] ²⁺	

	Describe and exp simple test reaction M2+(aq) ions, limit and Cu, and of M limited to m=Al ar the bases OH- NH-	olain the ons of: ited to M=Fe 43+(aq) ions, ind Fe, with	
End of term 1 assessment to cover: Exam in the beginning on transition metals End of topic test – kinetics and rate equations End of topic test – Acids and bases End of topic test on thermodynamics and entropy End of topic test – optical isomerism, aldehydes and ketones and carboxylic acid and its derivatives	End of term 2 assessment to cover: Linear exam End of topic test – Aromatic chemistry, Amines, proteins, amino acids, and DNA End of topic test – Organic synthesis and NMR End of topic test – Transition metals and reaction aqueous solutions. End of topic test – Properties of period 3 and the	End of year assessment to cover: Polymers, Linear assessment Year 13 examinations pons of ions in heir oxides	

Building understanding: Rationale / breakdown for your sequence of lessons:

Teacher 1 delivers physical chemistry and organic chemistry. Teacher 2 delivers inorganic and physical chemistry. This is split in the same way as how the examination papers are.

Physical chemistry is interleaved throughout the two years and taught by both teachers.

Teacher 1:

Optical Isomerism, aldehydes and ketones and carboxylic acids and their derivatives: Starting with optical isomerism, which deals with stereoisomerism, sets the stage for understanding the spatial arrangement of atoms in organic compounds. It introduces the concept of chirality, which is fundamental in organic chemistry. Aldehydes and ketones follow optical isomerism as they are among the simplest organic functional groups. They provide a foundational understanding of the carbonyl group and related reactions. The knowledge of isomerism can be applied here as well, especially with enantiomers. Building upon the understanding of aldehydes and ketones, the study of carboxylic acids and their derivatives introduces students to a broader class of organic compounds. This topic explores the reactions, nomenclature, and properties of carboxylic acids and related functional groups.

Acids and Bases: The study of acids and bases is important as it covers the principles of acidity and basicity, which are fundamental to understanding organic reactions and chemical equilibria. It's introduced here as it's relevant to carboxylic acids and other organic functional groups.

Aromatic Chemistry: Aromatic chemistry is introduced next. This is because it deals with a unique class of organic compounds, benzene and its derivatives, and their aromaticity. Students can apply their knowledge of acids and bases in the context of Lewis acid-base reactions with aromatic compounds.

Amines and polymers: Amines introduce students to the chemistry of nitrogen-containing compounds that include those with a benzene ring, which is an essential part of organic chemistry. They also present the opportunity to explore different types of isomerism, such as geometric isomerism in some cases. The study of polymers comes next. It's relevant because it's derived from organic compounds, and understanding polymer chemistry is crucial for both organic chemistry and materials science. This topic connects theoretical knowledge to practical applications.

Amino Acids, Proteins, and DNA: Exploring amino acids, proteins, and DNA is placed here as it connects organic chemistry to biochemistry. Understanding the structure and properties of amino acids is crucial for comprehending the biochemistry of proteins and DNA.

Chromatography: The introduction of chromatography follows because it's a widely used technique for separating and analysing organic compounds. Students can apply their knowledge of organic functional groups and structure to chromatographic separations.

Organic Synthesis and Analysis: Finally, the sequence concludes with organic synthesis and analysis, allowing students to bring together the knowledge they've acquired throughout the course. This provides a practical application of organic chemistry by teaching students how to design and execute synthetic routes and analyse the products.

In summary, this sequencing builds from fundamental organic chemistry concepts to biochemistry and practical techniques. It ensures that students have a comprehensive understanding of organic chemistry and its applications, as well as the ability to synthesize and analyse organic compounds, in line with the increasing complexity of the topics.

Teacher 2:

Rate Equations: Students begin the course by reviewing kinetics, which is what they covered at the end of year 12. After students have a grasp of reaction rates, they delve into rate equations. This topic allows them to apply mathematical expressions to describe how the rate of a chemical reaction depends on the concentrations of reactants. It builds on the principles introduced in kinetics and provides a more quantitative aspect of reaction rates.

Thermodynamics and Entropy: Moving on to thermodynamics, specifically the study of energy changes and entropy, is a logical step. This topic helps students understand the driving forces of chemical reactions, the concepts of enthalpy, entropy, and Gibbs free energy, and how these variables relate to the spontaneity and equilibrium of chemical reactions. Having a strong foundation in kinetics and rate equations aids in grasping the energetic aspects of chemical processes.

Electrode Potential: Transitioning to electrode potential involves understanding redox reactions and electrochemistry. It builds upon the knowledge of kinetics and thermodynamics and introduces the concept of electrode potential, which is vital for understanding the behaviour of electrochemical cells and reactions.

Transition Metals: The topic of transition metals comes next because it is essential for understanding complex ions and coordination chemistry. It introduces students to the unique properties and reactivity of transition metals, expanding their knowledge of chemical bonding and coordination compounds.

Properties of Period 3 and Their Oxides: Period 3 elements and their oxides are studied towards the end of the sequence because it brings together many concepts learned throughout the course. Students can apply their understanding of bonding, periodic trends, and redox reactions to explore the properties of elements in this period and their oxides, which helps consolidate their knowledge of chemistry.

In summary, the sequencing of these topics aims to provide students with a structured and logical progression, building from fundamental principles (kinetics) to more complex concepts (thermodynamics, electrode potential, transition metals) and concluding with a topic (period 3 elements and their oxides) that allows them to apply their comprehensive knowledge of chemistry.

Home – Learning:	Home – Learning:	Home – Learning:	Home – Learning:	Home – Learning:	Home – Learning:		
Chemsheets booklet on	Chemsheets booklet on			Revision based home			
kinetics	thermodynamics	Assessed home-learning	Assessed home learning on	learning.			
		on optical isomerism,	Amino acid, DNA and				
	chemsheets booklet on	aldehydes and ketones	proteins.				
	acids and bases	and carboxylic acids and					
		their derivatives.	Chemsheets transition metals				
			booklet.				

Reading / literacy:

On regular occasion, students are given pre-learning reading on topics to encourage them to become more independent in their learning. Students are shown how to tackle exam questions through underlining keywords and command words. Understanding of these command words is tested in our connector/starter activities as well. In chemistry exams, in each paper there is a 6-mark question where quality of written communication is assessed. This is taught through modelling techniques of looking at previous students work and assessing where the marks are given and what makes a good answer.

Numeracy:	Numeracy:	Numeracy:	Numeracy:	Numeracy:	Numeracy:
20% of the course is related	pH calculations, which also	Hydrogenation	Redox titration calculations	Using NMR spectra and	
to mathematical skills.	involve using, exponential	calculations to determine		integration line to identify	
	and logarithmic functions.	stability of kekulè structure.		ratio of carbons and	
draw different forms of				hydrogens in a	
isomers and identify chiral	Drawing a graph to	Electrode potential		compound.	
centres from a 2D or 3D.	determine value of ka.	calculations and			
representation.		calculations on feasibility			
	Solve algebraic equations	of a reaction.			
They also understand the	by carrying out Hess's law				
symmetry from looking at	calculations.				
2D and 3D structures of					

optical isomorphy	Entropy calculations				
oplical isomers by	Eniropy calculations –				
identifying the chiral	rearranging equation				
carbon					
Order of reaction					
calculations					
calcolations					
Graph drawing to use					
Arrhenius equation					
, anternes equation.					
Change the subject of an					
equation Students may be					
tostad on their ability to					
lested on mell ability to					
carry out structured and					
unstructured mole.					
calculations o a calculato					
a rate constant k					
from a rate equation.					
solve algebraic equations					
by calculating a rate					
constant k from a rate					
equation.					
determine the order of a					
reaction from a					
reaction from a					
graph and derive a rate					
expression from a araph.					
Draw and use the slope of a					
tangent to a curve as a					
measure					
of rate of change					
or rule of chunge					
	l The sector of the sector of the transformed sector of the transformed sector of the transformed sector of the t		<u> </u>		l
Enrichment / opportunities to	aevelop cultural capital (inclu	aing careers, WRL and SMSC)	:		
Enrichment workshops, lecture	es and visits will be organised o	as part of the science week pr	ogramme and students are enco	ouraged to read chemistry re	eview magazine that can
be found in the sixth form library. This magazine contains useful articles and exam tips					