Programme of study for Year 11 Science: 2024-2025

Autumn (1 st half term)	Autumn (2 nd half term)	Spring (1 st half term)	Spring (2 nd half term)	Summer (1 st half term)	Summer (2 nd half term)
 Topics: P11 Waves P12 Electromagnetic Spectrum C11 Chemistry of the atmosphere B16 Organising an ecosystem B17 Biodiversity and ecosystems 	 Topics: C12 Using resources C10 Chemical analysis B12 Reproduction B13 Variation and Evolution 	 Topics: P5 Electricity in the Home P13 Electromagnetism B14 Genetics and evolution B15 Adaptations, interdependence and competition 	 B11 Hormonal Coordination revision C6 Rate and Extent of Chemical Change Revision 	 P10 Force and motion recap P7 Radioactivity recap 	Topics: This half term is for revising, improving exam technique, completing any outstanding required practicals, to prepare for the GCSE exams.
Assessment: Waves required practical. Ecology required practical.	Assessment: Mock exam paper 1.	Assessment: Required practical	Assessment: Mock exam paper 2	Assessment: Required practical	

Skills (students should be able to do):

AO1: Demonstrate knowledge and understanding of: scientific ideas; scientific techniques and procedures.

AO2: Apply knowledge and understanding of: scientific ideas; scientific enquiry, techniques and procedures.

AO3: Analyse information and ideas to: interpret and evaluate; make judgments and draw conclusions; develop and improve experimental procedures

Key learning	Key learning	Key learning outcomes	Key learning	Key learning	Key learning
outcomes (Students	outcomes (Students	(Students should	outcomes (Students	outcomes (Students	outcomes
should know):	should know):	know):	should know):	should know):	(Students should
P11 Waves		P5 Electricity in the	B11 Hormonal	P10 Force and	know):
 Describe the 	C12 Using	Home	Coordination	Motion	This half term is for
properties of	Resources	Explain the		 Describe and 	revising, improving
waves, including		components of	Describe the roles of key	calculate the	exam technique,
amplitude,	Describe the	mains electricity,	hormones, such as	relationships	completing any
wavelength,	processes involved	including live,	insulin, adrenaline, and	between force,	outstanding required
frequency, and	in obtaining	neutral, and earth	reproductive hormones,	mass, and	practicals, to prepare
speed.	potable water and	wires.	in regulating body	acceleration	for the GCSE exams.
 Differentiate 	the treatment of	Describe the role of	functions.	using F=maF =	
between	wastewater.	fuses, circuit	Explain the feedback	maF=ma.	
transverse and	Explain the life	breakers, and	mechanisms involved in	 Explain the 	
longitudinal	cycle assessment	earthing in	maintaining homeostasis,	concepts of	
waves,	(LCA) of products	electrical safety.	including blood glucose	velocity, speed,	
providing	and its importance	Calculate power	regulation.	and	
examples of	in evaluating	using P=IVP =	Understand the	acceleration	
each.	environmental	IVP=IV and energy	menstrual cycle and the	and interpret	
 Calculate wave 	impact.	transfer with E=PtE	role of hormones in	motion graphs.	
speed using the	Discuss sustainable	= PtE=Pt.	reproduction.	 Understand the 	
formula v=fλv =	use of resources,	Compare the	Discuss the impact of	effects of	
f \lambdav=fλ	including recycling,	efficiency and	hormonal imbalances	friction, air	
and apply it to	reusing materials,	energy use of	and treatments available	resistance, and	
various	and reducing	household	for regulation.	other forces on	
scenarios.	waste.	appliances.	C6 Rate and Extent of	objects in	
 Explain how 	Understand the	P13 Electromagnetism	Chemical Change	motion.	
waves are	extraction of metals	Describe how		 Describe 	
reflected,	and methods to	magnetic fields are	Describe factors affecting	momentum and	
refracted, and	reduce the	created around	the rate of chemical	apply the	
diffracted in	environmental	electric currents.	reactions, including	principle of	
different	impacts of	Explain the	temperature,	conservation of	
mediums.	extraction	principles of	concentration, surface	momentum in	
P12 Electromagnetic	processes.	electromagnets	area, and catalysts.	collisions.	
Spectrum	C10 Chemical	and factors that	Explain how to measure	P7 Radioactivity	
 Identify and 	Analysis	affect their	reaction rates and	 Describe the 	
describe the		strength.	interpret rate graphs.	structure of the	

main types of	Describe the	Understand the	Understand reversible	atom and	
electromagnetic	techniques used in	applications of	reactions and the	identify types of	
waves, from	chemical analysis,	electromagnetism	concept of dynamic	radioactive	
radio waves to	including	in motors,	equilibrium.	decay: alpha,	
gamma rays.	chromatography	generators, and	Apply Le Chatelier's	beta, and	
 Explain the uses 	and spectroscopy.	transformers.	Principle to predict the	gamma	
and hazards of	Differentiate	Calculate force on a	effect of changing	radiation.	
different	between pure	conductor in a	conditions on	Explain half-life	
electromagnetic	substances and	magnetic field and	equilibrium.	and calculate it	
waves,	mixtures and	describe its		from given data.	
particularly in	understand how to	applications.		Discuss the uses	
healthcare,	identify them.	B14 Genetics and		and dangers of	
communication,	Explain tests for	Evolution		radioactivity,	
and everyday	common gases,	Describe the		including	
technology.	such as oxygen,	structure of DNA,		medical	
 Describe how 	carbon dioxide,	genes, and		applications and	
electromagnetic	hydrogen, and	chromosomes and		safety	
waves are	chlorine.	their role in		precautions.	
generated and	Interpret	inheritance.		Understand	
detected.	chromatograms	Explain Mendelian		nuclear fission	
 Understand the 	and explain how	inheritance,		and fusion	
speed of	they are used to	including dominant		processes and	
electromagnetic	identify substances.	and recessive		their role in	
waves in a	B12 Reproduction	alleles.		energy	
vacuum and the		 Discuss genetic 		production.	
concept of wave	Describe the	variation and the			
frequency and	process of sexual	process of natural			
energy.	and asexual	selection.			
C11 Chemistry of the	reproduction and	Describe the			
Atmosphere	give examples of	evidence for			
• Describe the	each.	evolution, including			
composition of	Explain the	fossils and genetic			
Earth's	structure and	similarities.			
atmosphere and	function of	B15 Adaptations,			
how it has	reproductive	Interdependence, and			
changed over	systems in humans.	Competition			
time.	Understand the	Explain the			

•	Explain the	role of		adaptations of		
	processes that	chromosomes,		organisms to their		
	have shaped	genes, and DNA in		environments and		
	the	inheritance.		how these aid		
	atmosphere,	Describe methods		survival.		
	such as volcanic	of controlling	•	Describe the		
	activity,	reproduction,		concept of		
	photosynthesis,	including		interdependence in		
	and human	contraception and		ecosystems and		
	activities.	selective breeding.		factors affecting		
•	Describe the	B13 Variation and		population sizes.		
	greenhouse	Evolution	•	Understand the		
	effect, its role in			roles of producers,		
	global warming,	Explain the causes		consumers, and		
	and the impact	of variation within		decomposers in		
	of human	species, including		ecosystems.		
	activities on	genetic and	•	Discuss		
	climate change.	environmental		competition for		
•	Discuss	factors.		resources within		
	solutions to	Describe the		and between		
	reduce	process of natural		species and its		
	greenhouse gas	selection and its		impact on		
	emissions and	role in evolution.		ecosystems.		
	mitigate climate	Discuss the	•			
	change.	evidence for				
? B16	Organising an	evolution, such as				
Ecosys	stem	fossil records and				
•	Explain the	genetic similarities				
	roles of	between species.				
	producers,	Understand the impact				
	consumers, and	of artificial selection on				
	decomposers in	species and how it				
	an ecosystem.	differs from natural				
•	Describe the	selection.				
	processes of					
	energy transfer					
	through trophic					

	levels and food			
	chains.			
•	Understand the			
	importance of			
	recycling			
	materials,			
	including			
	carbon and			
	nitrogen cycles,			
	in supporting			
	ecosystem			
	sustainability.			
•	Discuss the			
	balance			
	between			
	different			
	populations and			
	factors affecting			
	population sizes			
	in an			
	ecosystem.			
₿ B17	Biodiversity and			
Ecosys	stems			
•	Define			
	biodiversity and			
	explain its			
	importance to			
	ecosystems and			
	human life.			
•	Describe human			
	impacts on			
	biodiversity,			
	such as			
	deforestation,			
	pollution, and			
	climate change.			
•	Explain			

st	rategies for			
СС	onservation			
ar	nd maintaining			
bi	odiversity,			
in	cluding			
pr	rotected areas,			
br	reeding			
pr	rograms, and			
SU	ustainable			
re	esource use.			
• U	nderstand the			
si	gnificance of			
bi	odiversity in			
m	aintaining			
ec	cosystem			
re	silience and			
th	ie impact of			
re	educed			
bi	odiversity on			
ec	cosystem			
st	ability.			

Assessments: 2 linear assessments, 6 other assessed practicals

Building understanding: Rationale / breakdown for your sequence of lessons:

The chosen topic sequence for AQA Combined Science Trilogy follows a logical and conceptual progression that allows for a comprehensive understanding of the key principles in biology, chemistry, and physics. By rotating the teaching of these subjects, students benefit from distributed practice, reinforcing their learning over time, as well as fostering cohesion between the three sciences.

These topics expand upon and further develop the concepts explored in the previous year.

Physics: We begin with Waves and Electromagnetic Spectrum, foundational topics that build a strong basis for understanding later topics like Electricity in the Home and Electromagnetism. Revisiting Force and Motion and Radioactivity toward the end reinforces physics concepts essential to practical and theoretical applications, preparing students for both exams and real-world contexts.

Chemistry: Chemistry units are arranged to progress from broad environmental concepts to specific analytical techniques and reactions. Beginning with Chemistry of the Atmosphere and Using Resources contextualizes the importance of sustainability. Moving into Chemical Analysis allows students to apply practical analysis skills, which are essential in experimental settings. Revision of Rate and Extent of Chemical Change solidifies students' understanding of reaction dynamics, a critical component for AQA chemistry assessments.

Biology: Biological topics follow a progression from ecosystem-level concepts down to genetic and cellular principles. Starting with Organising an Ecosystem and Biodiversity and Ecosystems provides an understanding of interdependence in nature. This foundation supports learning in Reproduction, Variation and Evolution, and Genetics and Evolution, which cover heredity and natural selection. Concluding with Hormonal Coordination and Adaptations, Interdependence, and Competition ensures a well-rounded review of human biology and ecological principles.

This sequence not only maintains a balance across the sciences but also aligns with natural links between topics, such as the connections between chemical analysis in environmental science and practical applications of physics in everyday life. This approach reinforces interdisciplinary skills while allowing both teachers to build from shared content knowledge, optimizing continuity and retention across the rotation.

By teaching biology, chemistry, and physics in a rotational basis, students are exposed to the three sciences throughout the academic year. This approach promotes distributed practice, allowing students to revisit and reinforce their knowledge of the sciences over time. It also encourages the development of cross-disciplinary connections, fostering a holistic understanding of scientific principles and their applications in the real world.

The students are then able to hone in on their exam technique in preparation for their exams.

Home – Learning:

Teachers will set home learning using lesson materials. Some of these will be assessed. This will be indicated.

Reading / literacy:

Students are encouraged to prior reading on topics. In lessons students are taught how to construct answers through use of writing frames and exemplar answers where extended writing is required and command words and keywords that are relevant to the topic are consistently assessed in lessons through questioning and written question practice.

Numeracy:

- Recognise and use expressions in decimal form: Recognise and use expressions in standard form; Use ratios, fractions and percentages; Make estimates of the results of simple calculations
- Handling data: Use an appropriate number of significant figures; Find arithmetic means; Construct and interpret frequency tables and diagrams, bar charts and histograms; Make order of magnitude calculations
- Algebra: Understand and use the symbols: =, <>, >, ∝, ~ ;Change the subject of an equation; Substitute numerical values into algebraic equations using appropriate units for physical quantities
- Graphs: Translate information between graphical and numeric form; Understand that y = mx + c represents a linear relationship; Plot two variables from experimental or other data; Determine the slope and intercept of a linear graph; Draw and use the slope of a tangent to a curve as a measure of rate of change

• Geometry and trigonometry: Visualise and represent 2D and 3D forms including two dimensional representations of 3D objects; Calculate areas of triangles and rectangles, surface areas and volumes of cubes

Enrichment / opportunities to develop cultural capital (including careers, WRL and SMSC):

- Trips during science week
- Science week
- Science club
- STEM club